Safe model-based learning for robot control

Felix Berkenkamp, Andreas Krause, Angela P. Schoellig

@CDC Workshop on Learning for Control

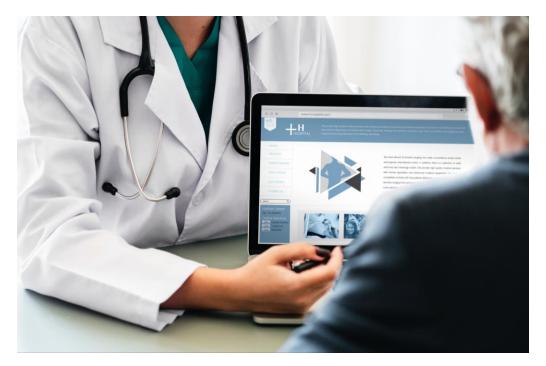
16th December 2018

Institute for Aerospace Studies UNIVERSITY OF TORONTO



The future of automation







The future of automation

Large prior uncertainties, active decision making

Need safe and high-performance behavior

Control approach

System model

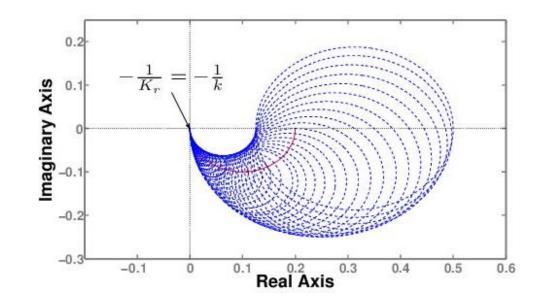
System identification

data collection

Controlled environments



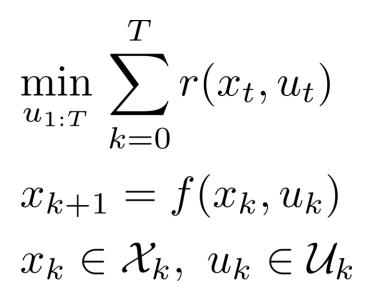
ETHZÜRICH Institute for Aerospace Studies UNIVERSITY OF TORONTO Robustness towards errors



Felix Berkenkamp

Controller design

Safety constraints

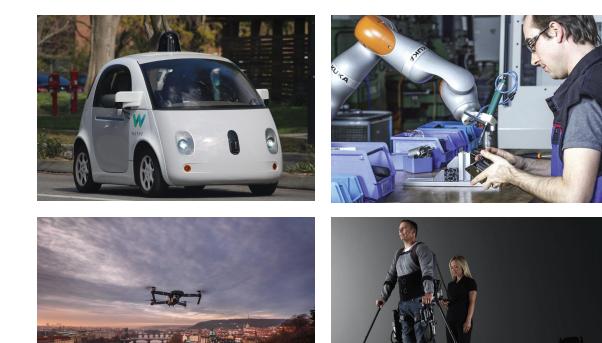


4

Two approaches

Control (Systems)

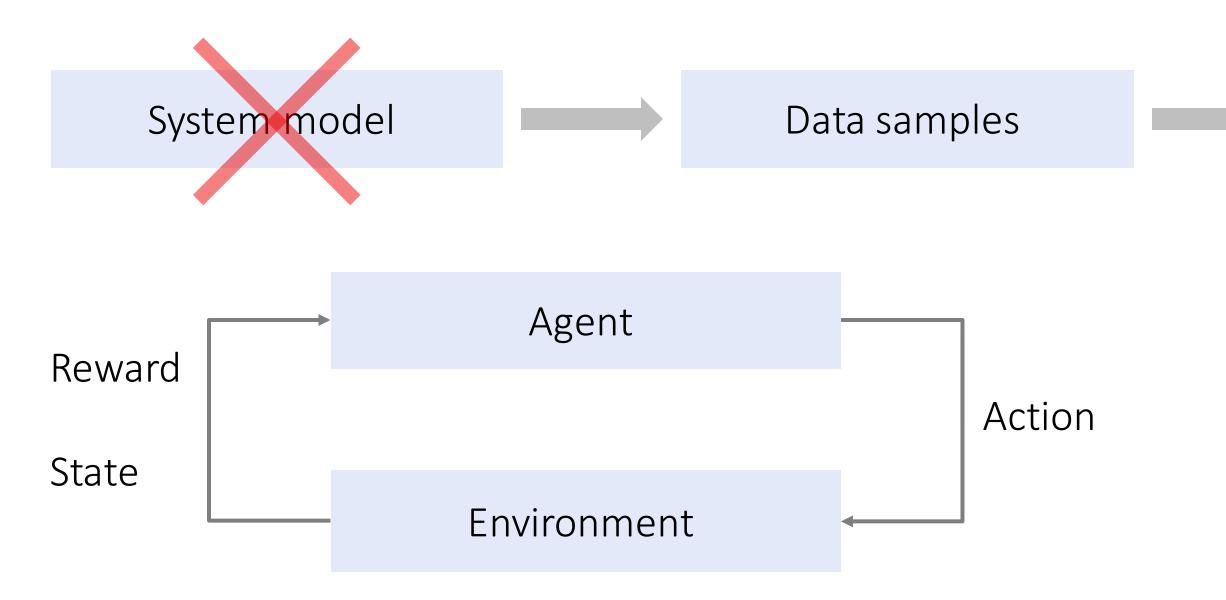
- + Models
- + Feedback
- + Safety
- + Worst-case
- Learning
- Data



Systems must learn and adapt

Performance limited by system understanding

Reinforcement learning approach



Collecting relevant data for the task (in controlled environments)

Performance typically in **expectation**

Controller optimization

Two approaches

Control (Systems)

- + Models
- + Feedback
- + Safety
- + Worst-case
- Learning
- Data

Systems must learn and adapt safety, data efficiency

Performance limited by system understanding

Model-based reinforcement learning

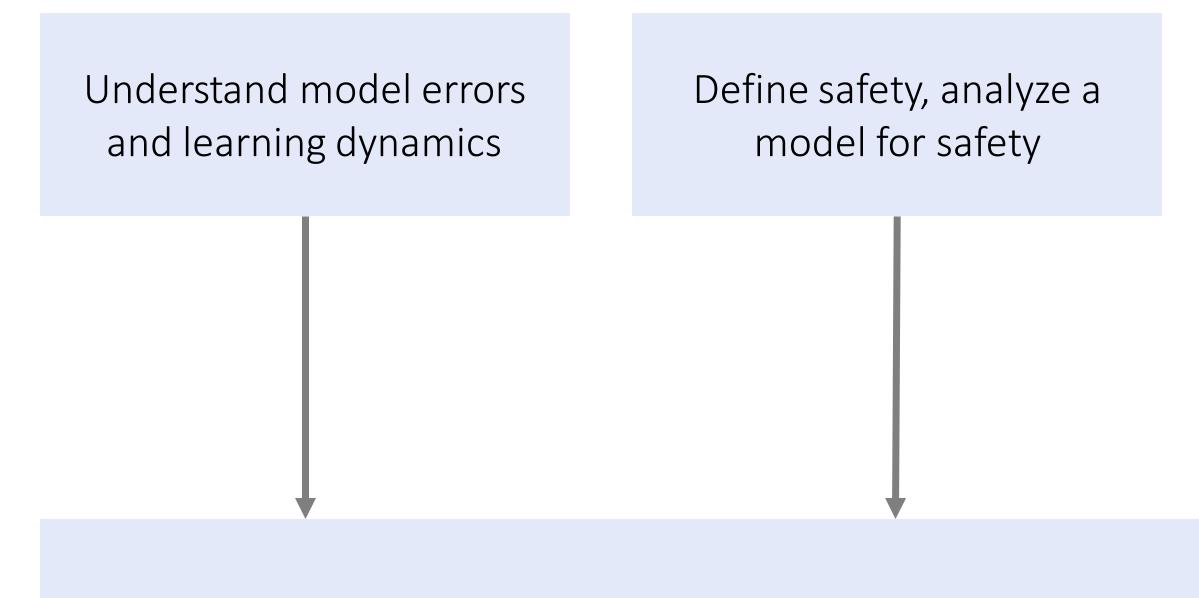
Felix Berkenkamp

Machine Learning (Data)

- + Learning
- + Data collection
- + Explore / exploit
- + Average case
- Worst-case
- Safety

Safety limited by lack of system understanding

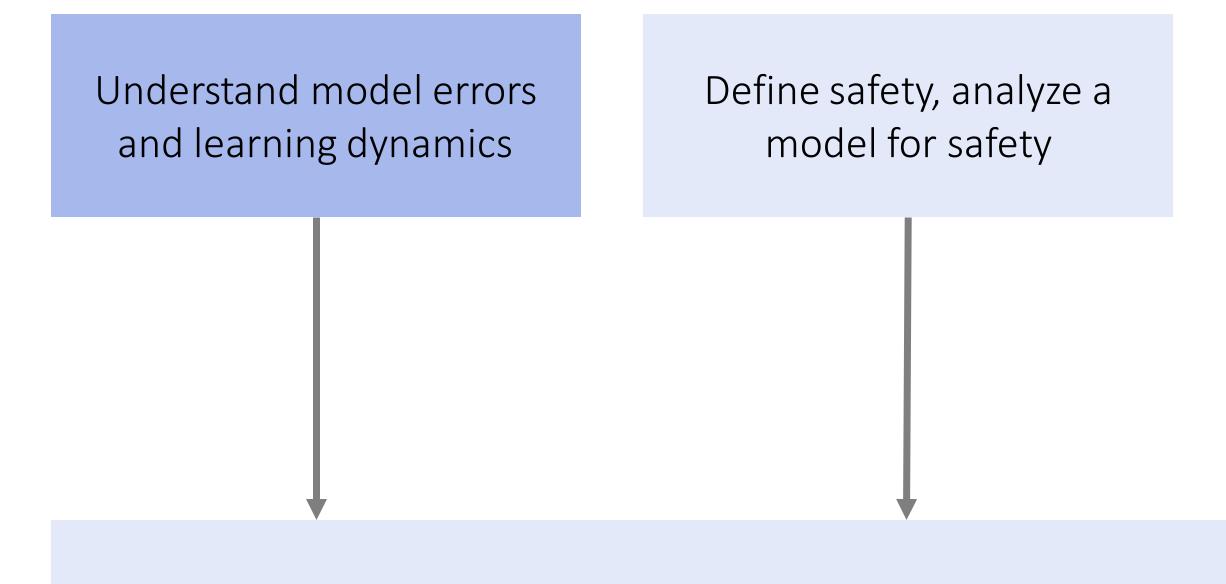
Prerequisites for safe reinforcement learning



Safe Model-based Reinforcement Learning

Algorithm to safely acquire data and optimize task

Overview

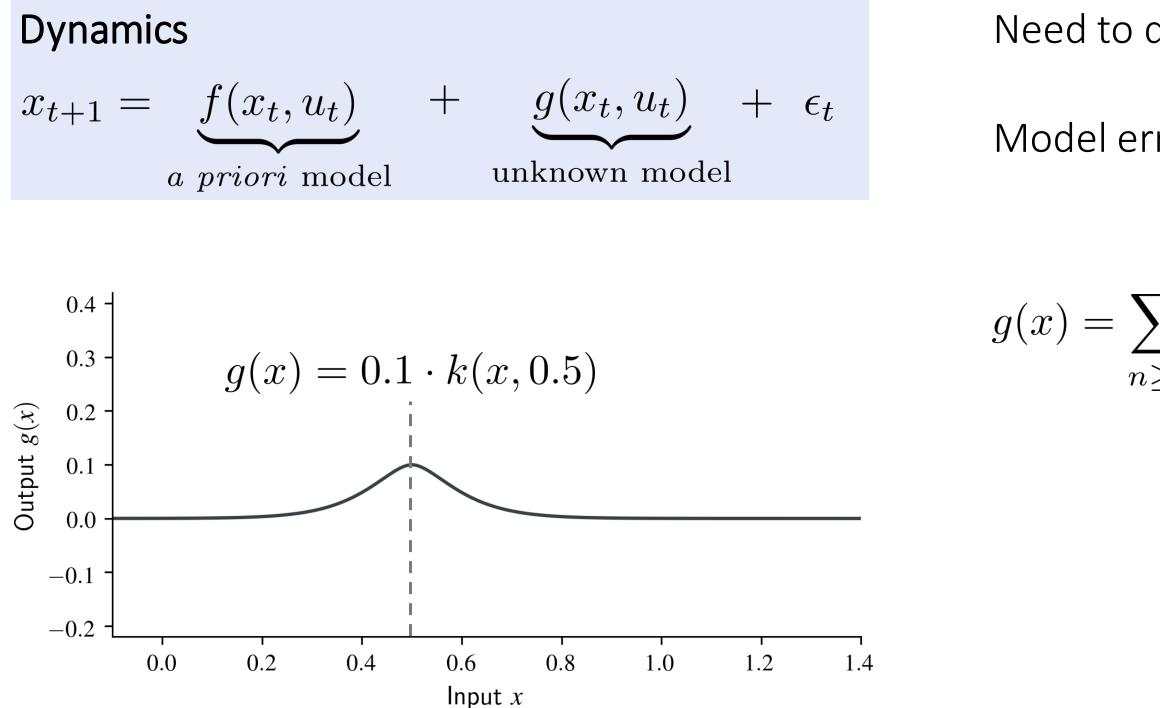


Safe Model-based Reinforcement Learning

Institute for Aerospace Studies

Felix Berkenkamp

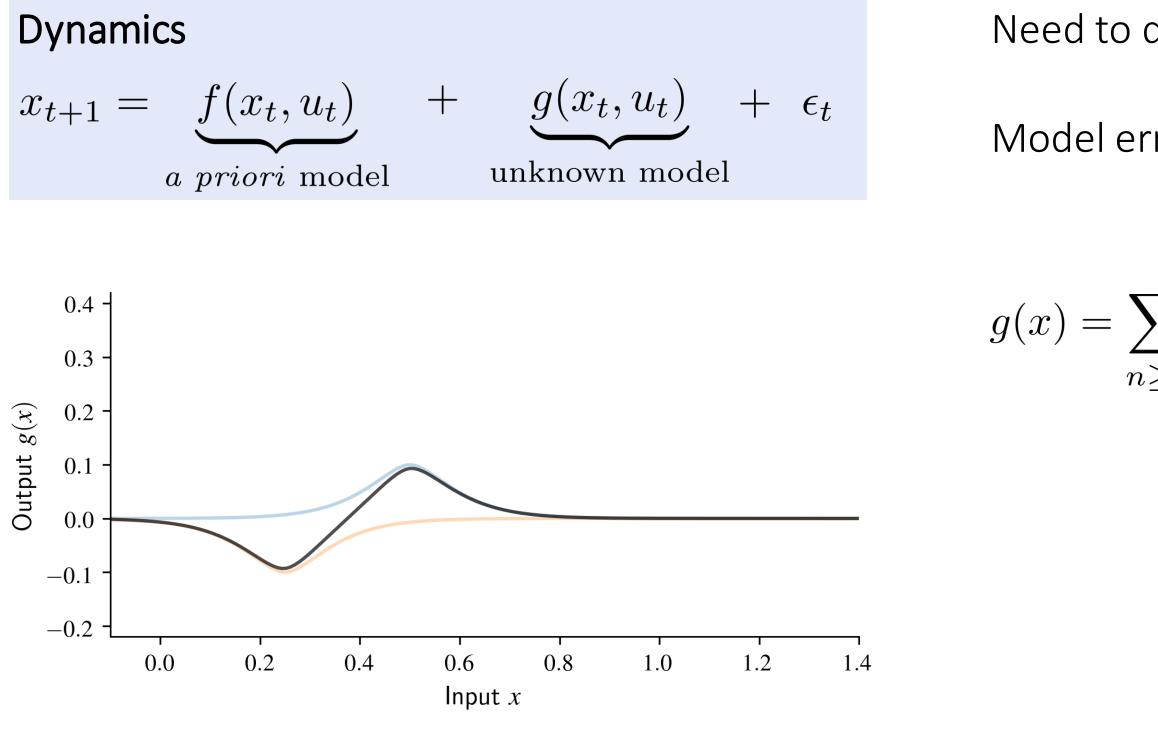
Algorithm to safely acquire data and optimize task



Felix Berkenkamp

Need to quantify model error

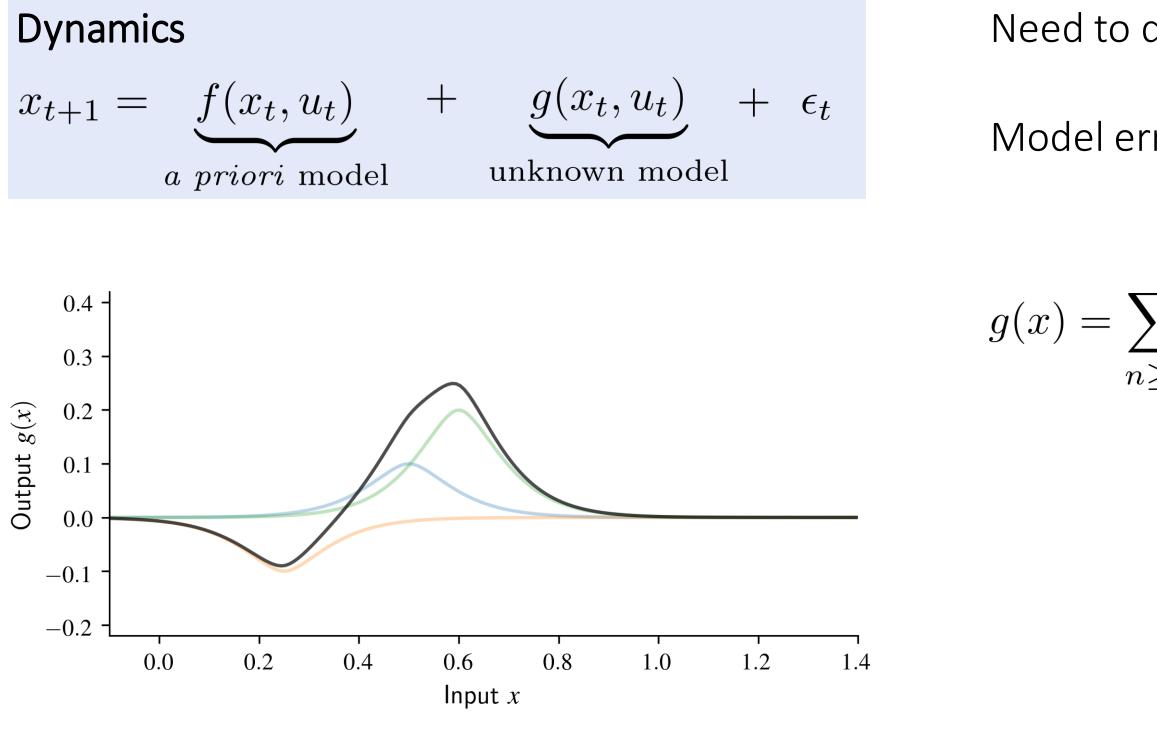
 $g(x) = \sum_{n \ge 0} \alpha_n \, k(x, x_n)$



Felix Berkenkamp

Need to quantify model error

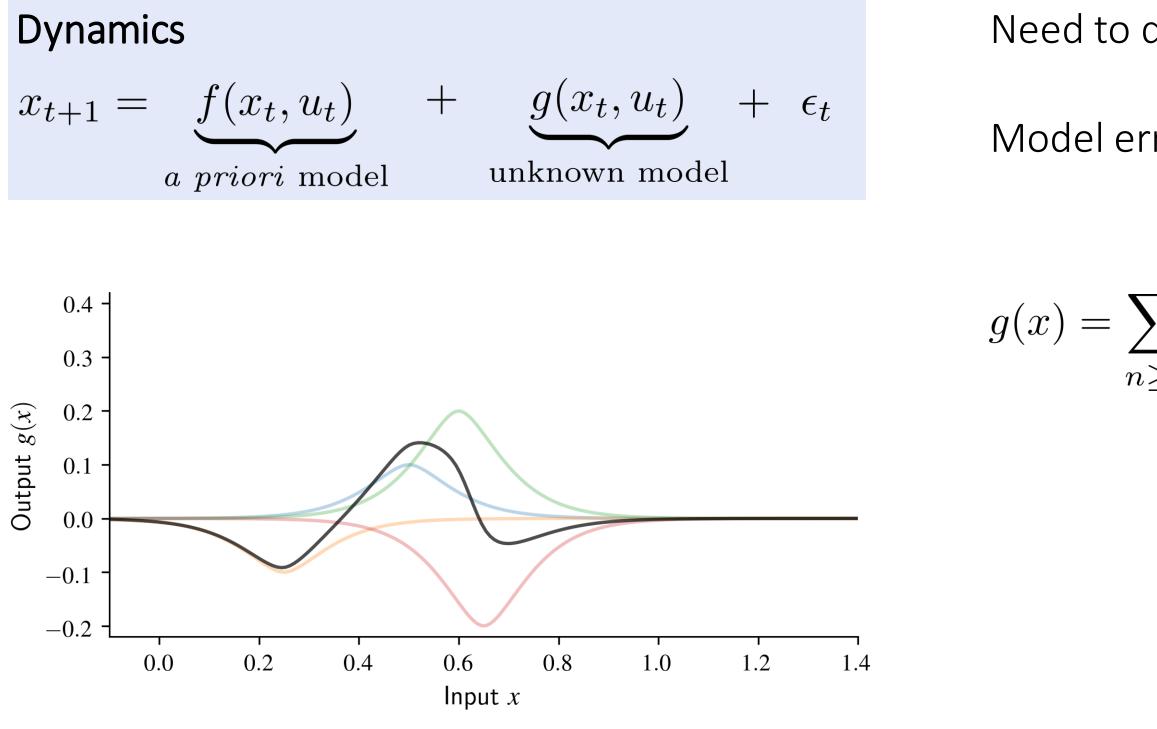
 $g(x) = \sum_{n \ge 0} \alpha_n \, k(x, x_n)$



Felix Berkenkamp

Need to quantify model error

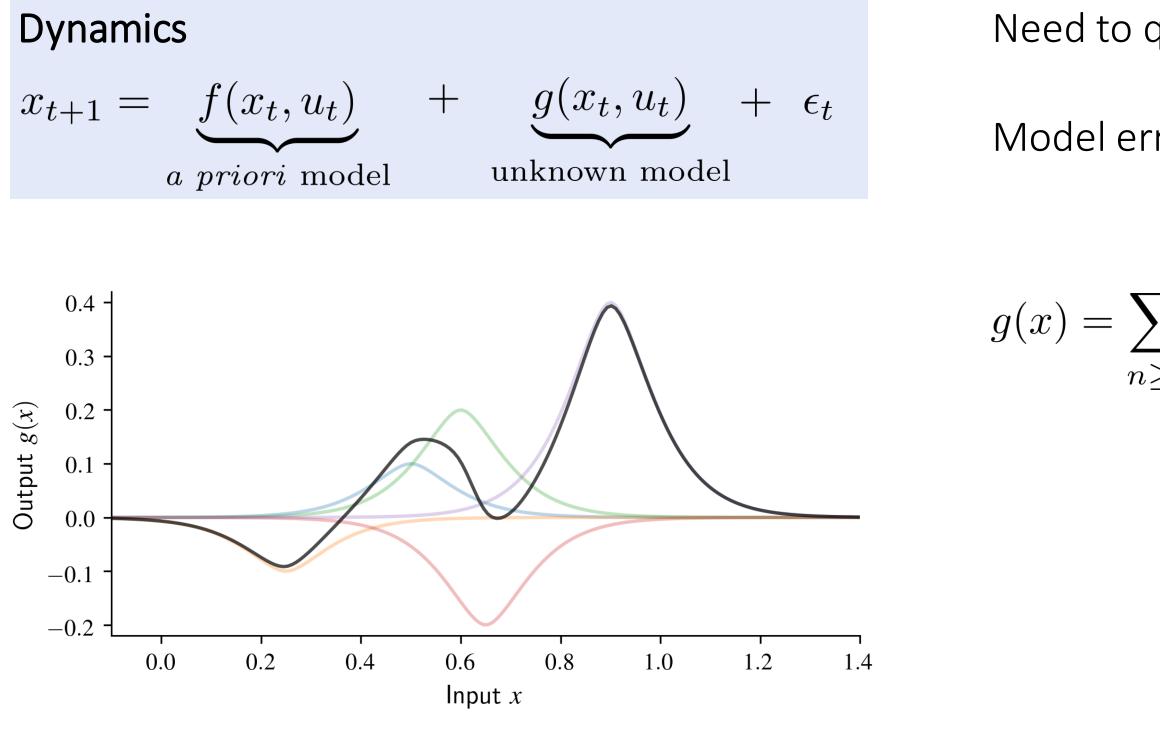
 $g(x) = \sum_{n \ge 0} \alpha_n \, k(x, x_n)$



Felix Berkenkamp

Need to quantify model error

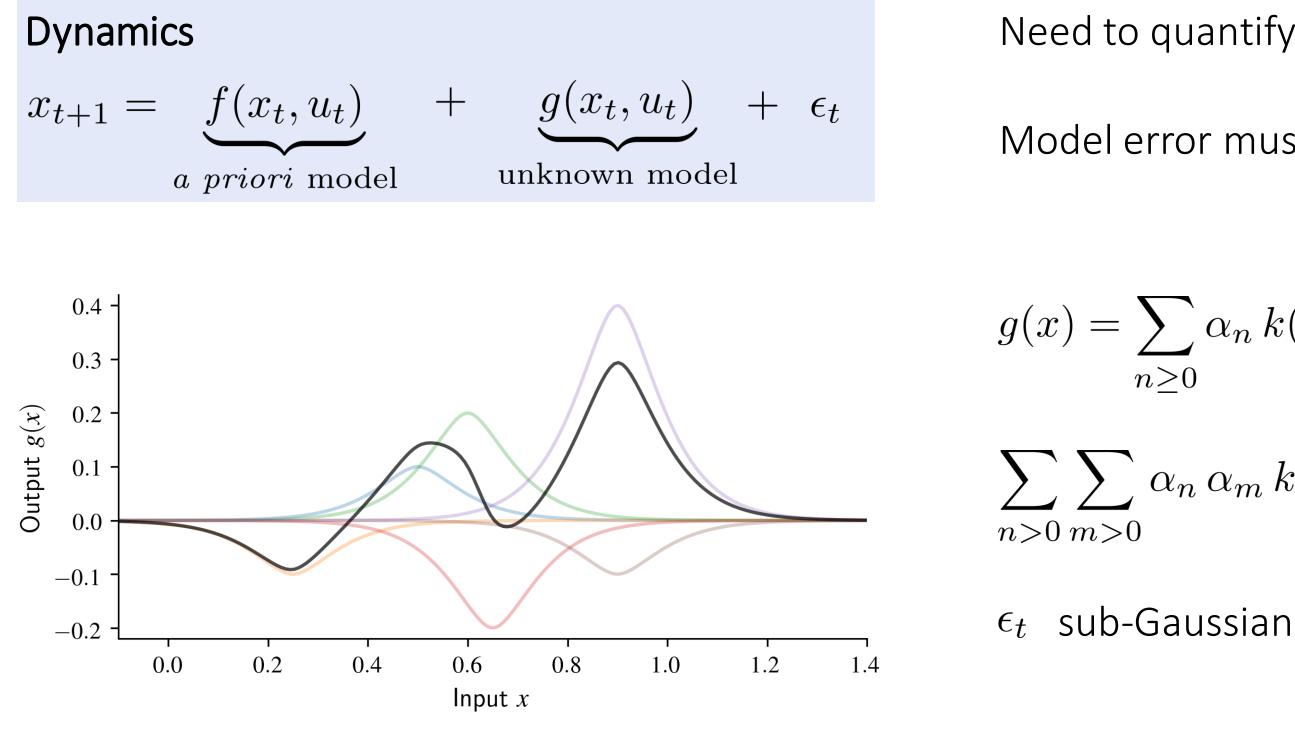
 $g(x) = \sum_{n \ge 0} \alpha_n \, k(x, x_n)$



Felix Berkenkamp

Need to quantify model error

 $g(x) = \sum_{n \ge 0} \alpha_n \, k(x, x_n)$



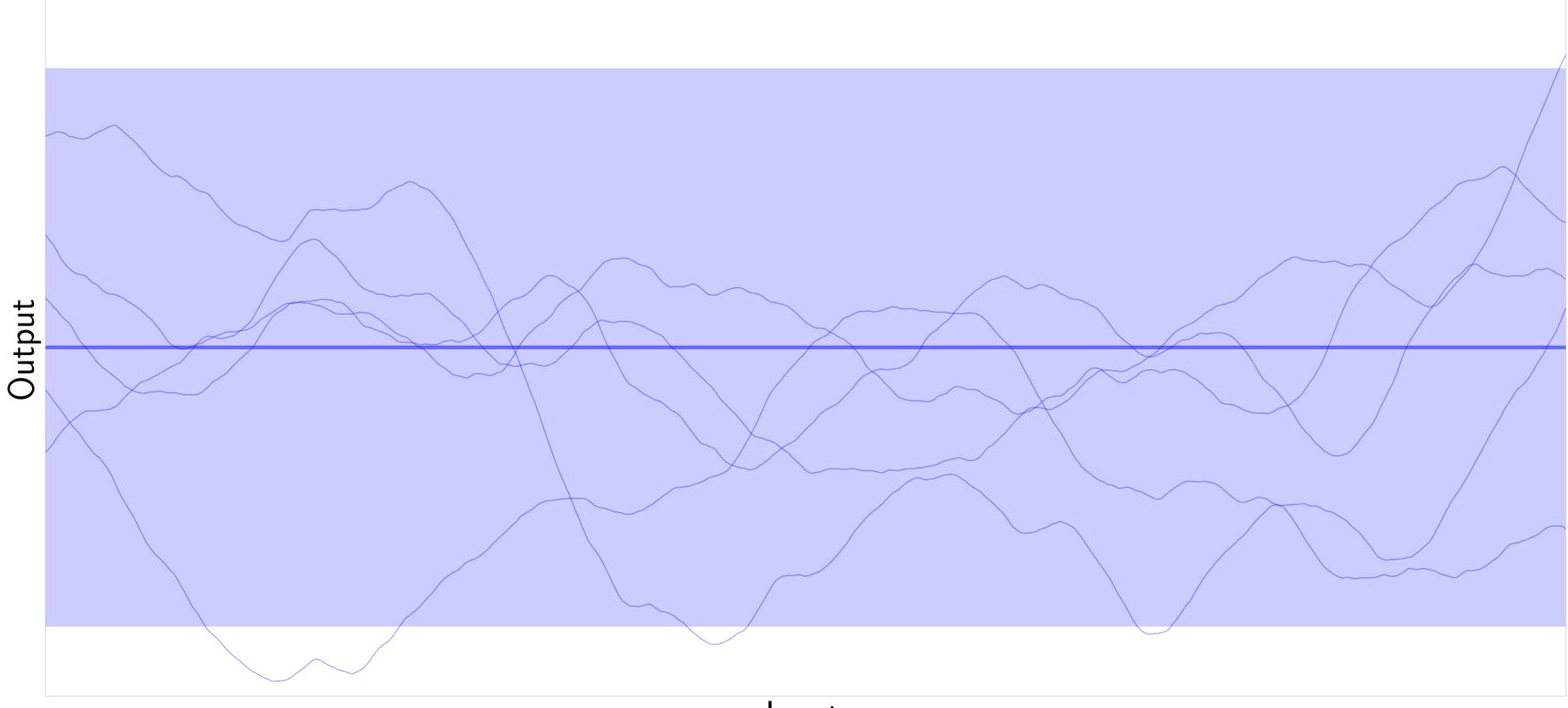
Felix Berkenkamp

Need to quantify model error

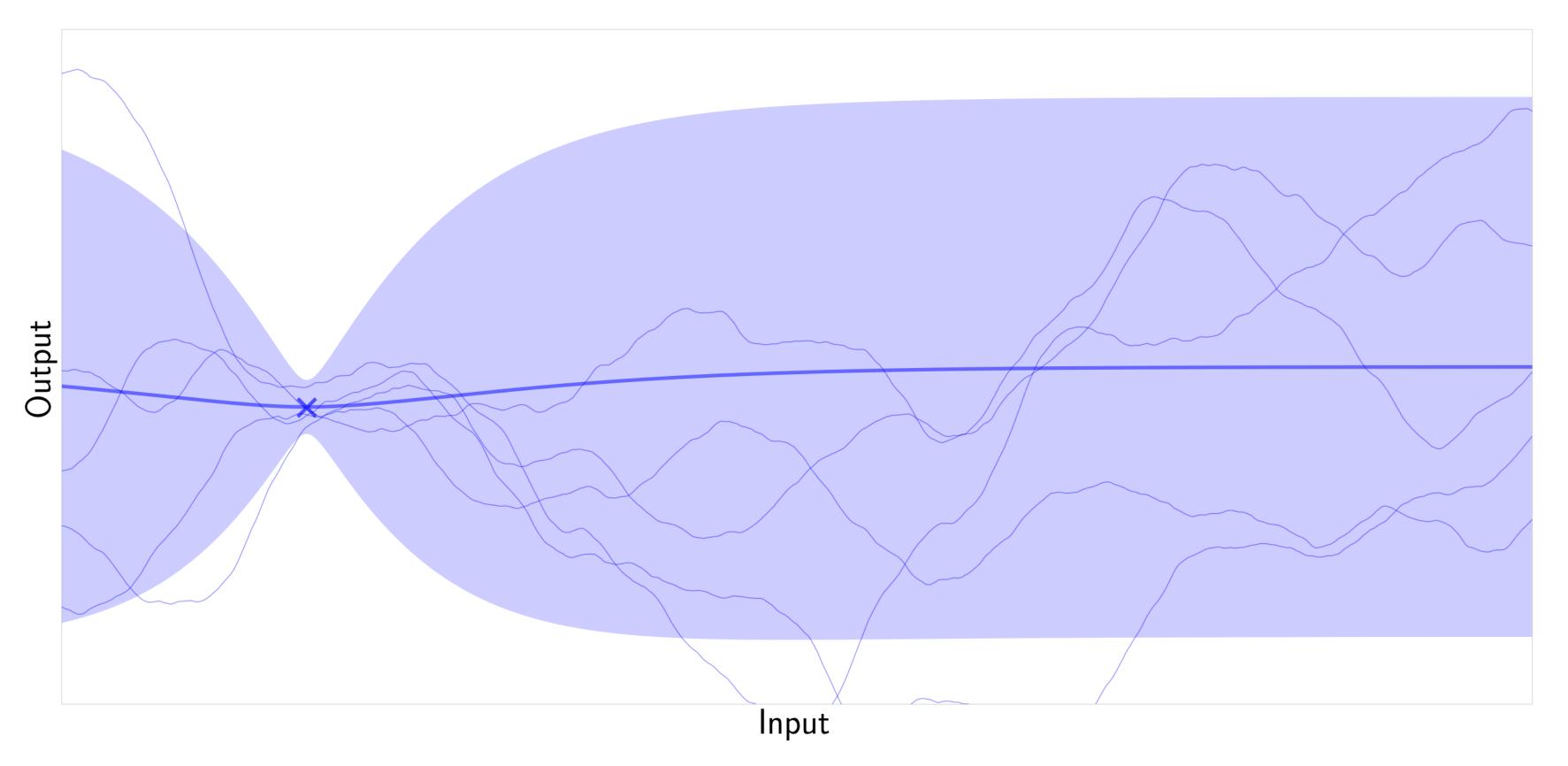
Model error must decrease with data

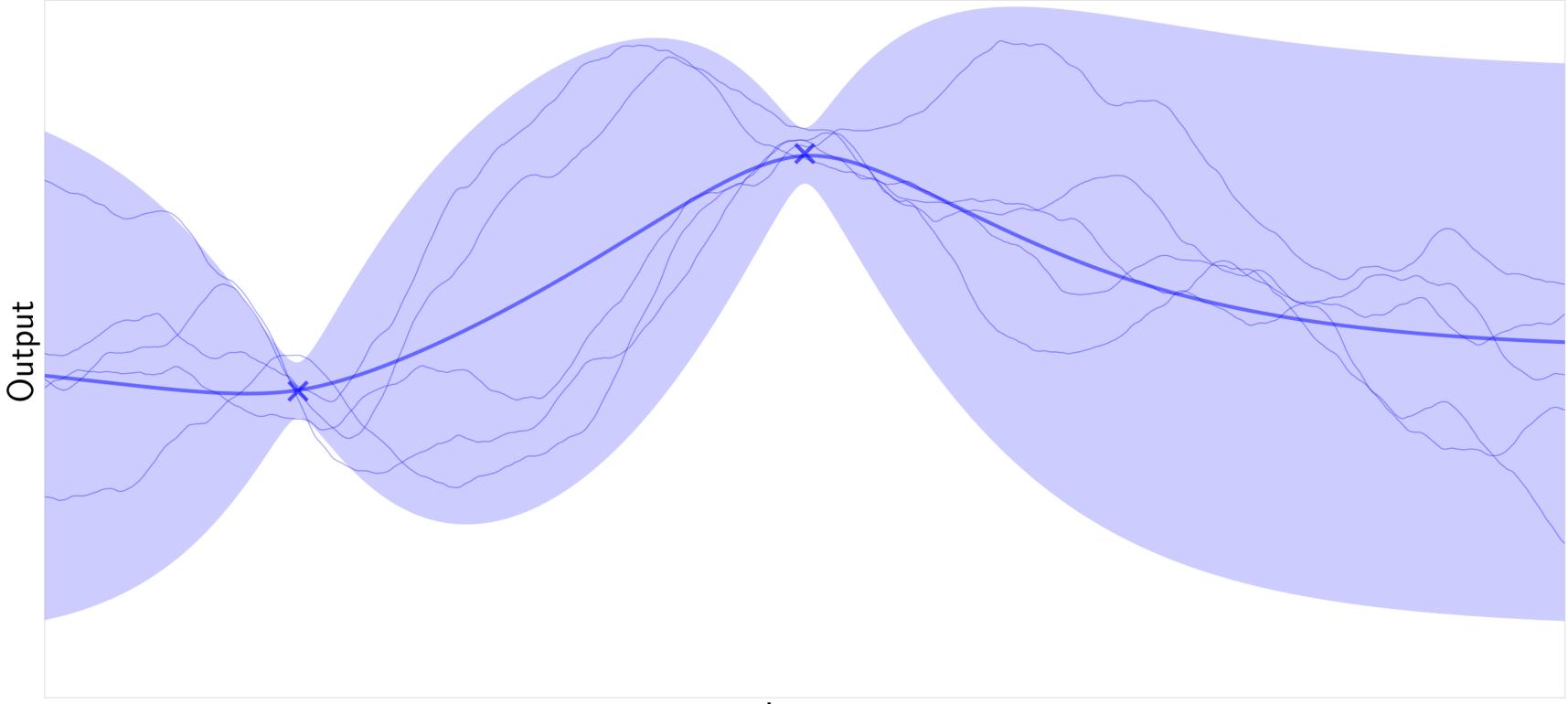
$$\sum_{k=0}^{\infty} \alpha_n k(x, x_n)$$

 $\sum \sum \alpha_n \, \alpha_m \, k(x_n, x_m) \le B$

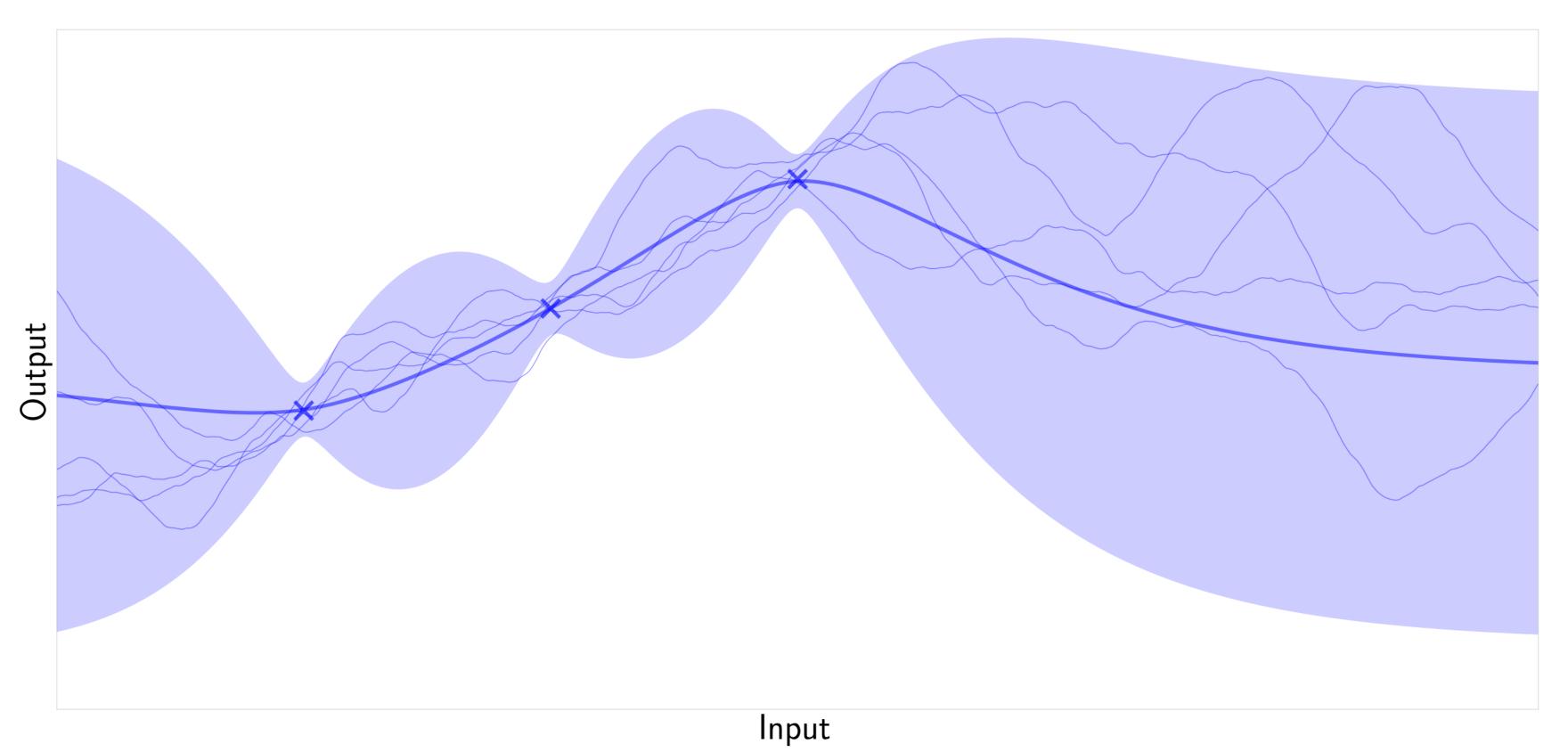


Input





Input



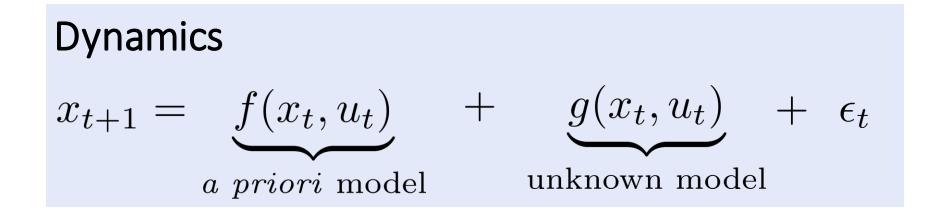
ETHZÜRICH

Output

מישמי			
Š	Gaussian Process Optimization in the Bandit Setting:	The model error scaled Gaussia with probabilit	
	No Regret and Experimental Design N. Srinivas, A. Krause, S. Kakade, M.Seeger, ICML 2010	jointly for all x selected meas	
	In	Input	

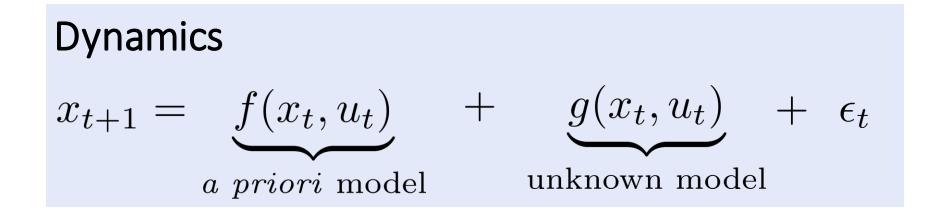
 $\operatorname{Cov}[g(x), g(x')] = k(x, x')$

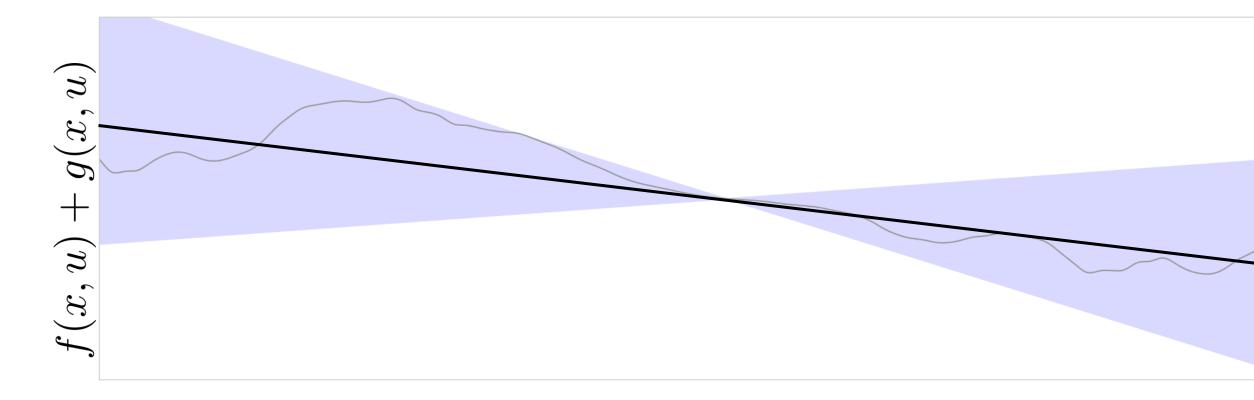
formally): ror g(x, u) is contained in the an process confidence intervals ity at least $1 - \delta$ x, u, time steps, and actively surements.



Felix Berkenkamp

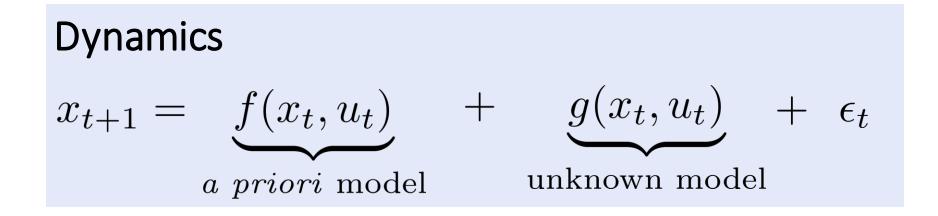
$\mu(x,u) = f(x,u)$

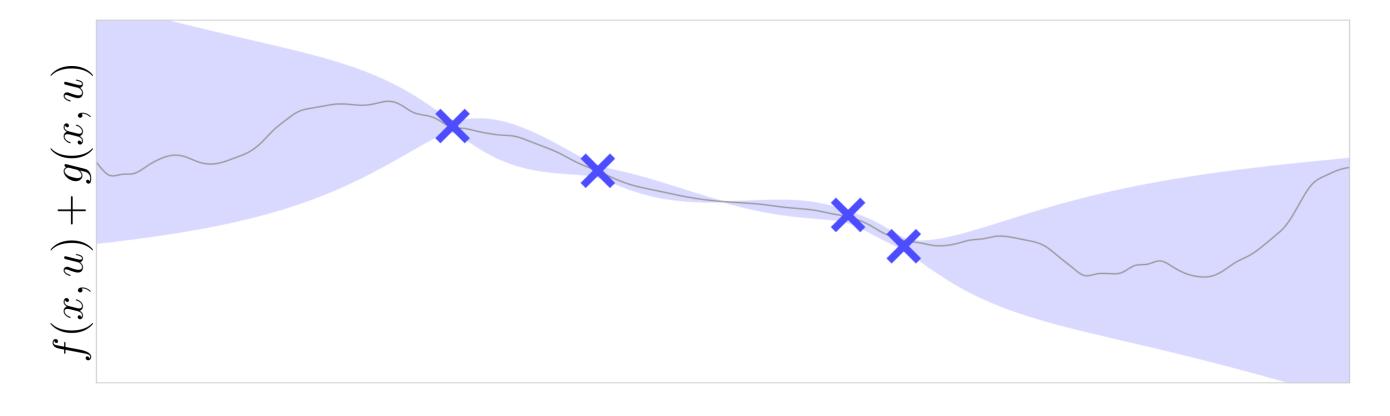


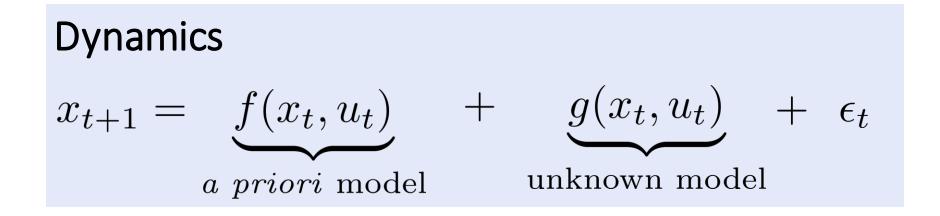


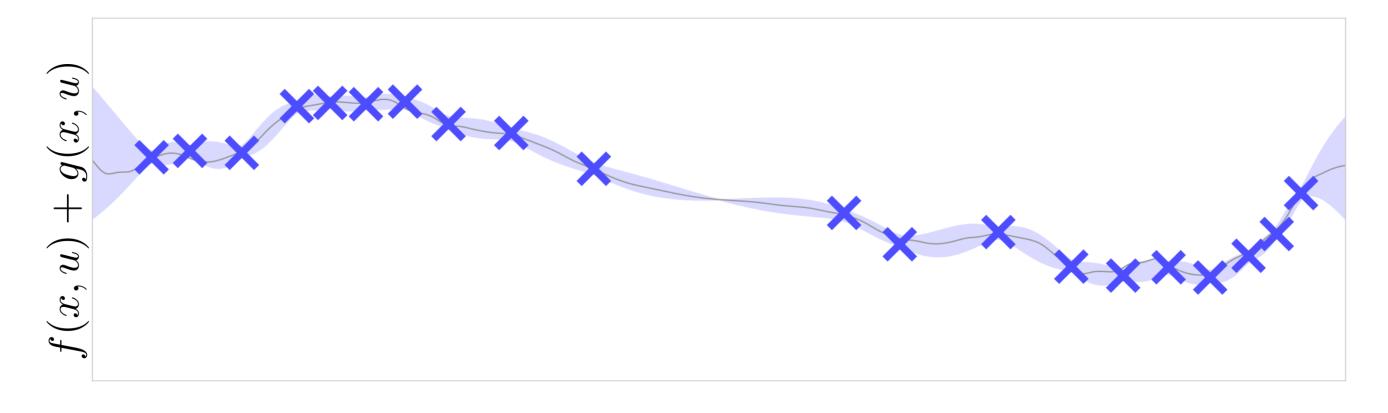
Felix Berkenkamp

$\mu(x,u) = f(x,u)$

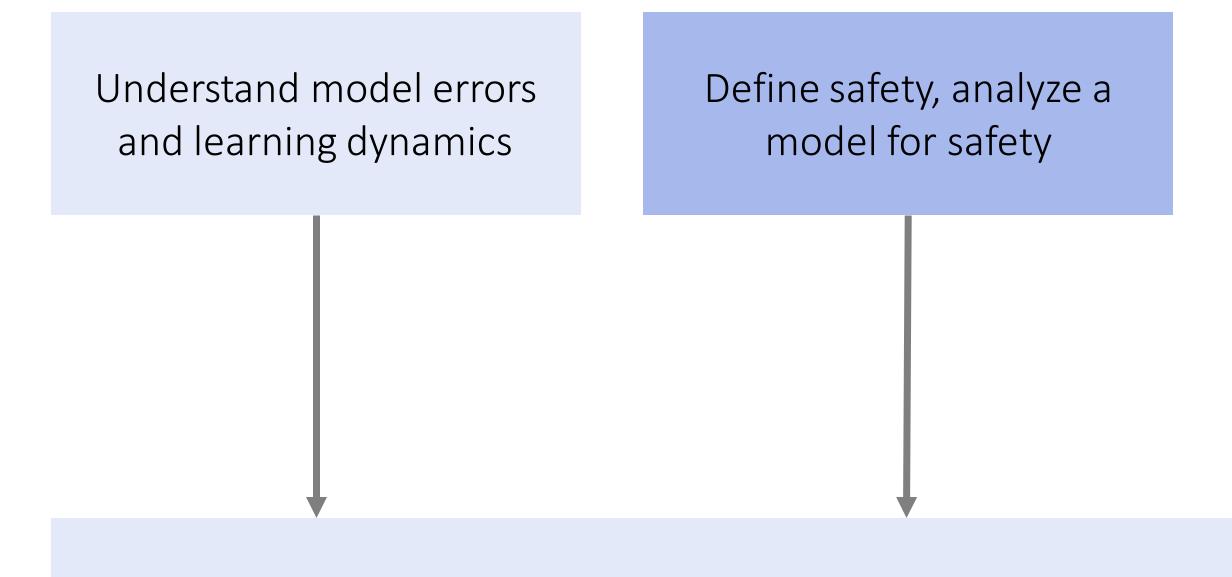








Overview

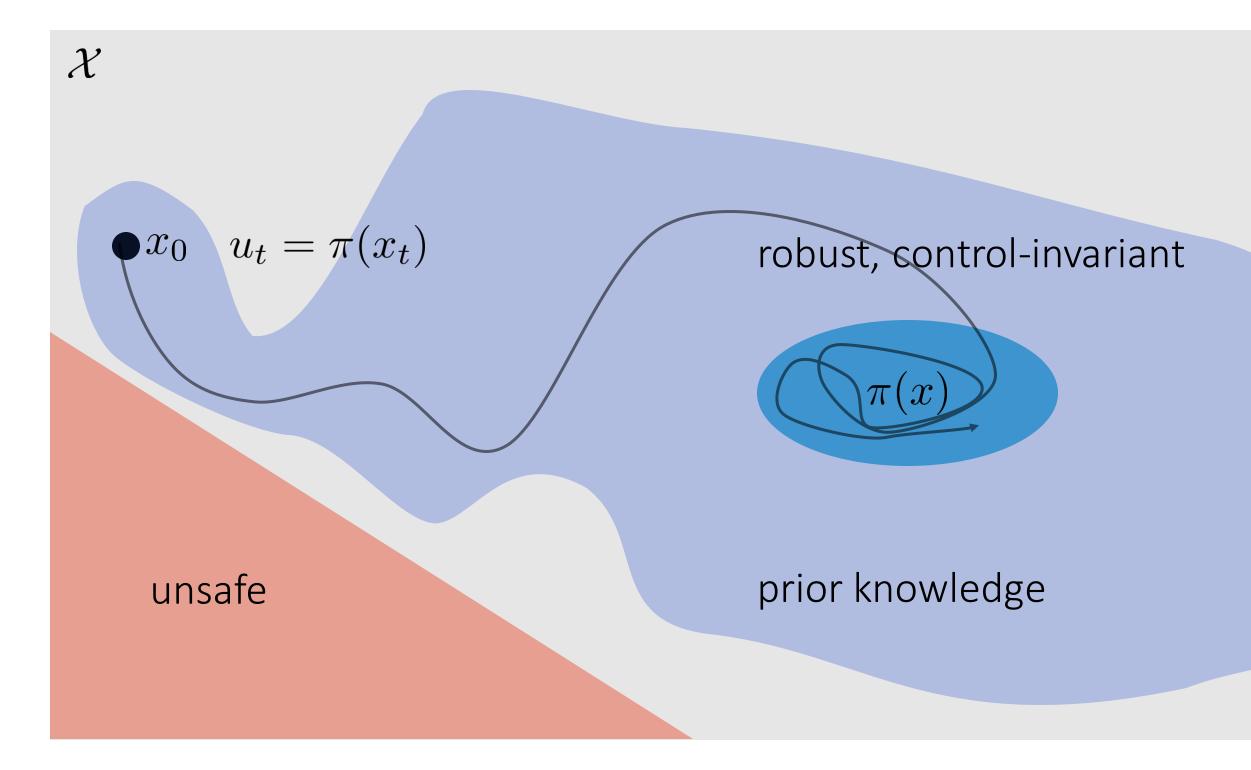


Safe Model-based Reinforcement Learning

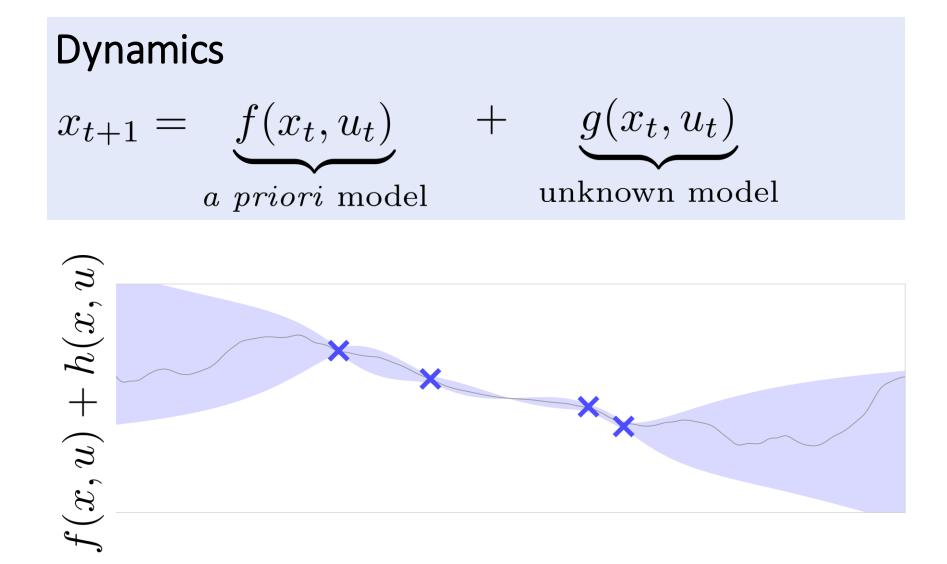
Institute for Aerospace Studies

Felix Berkenkamp

Algorithm to safely acquire data and optimize task



Safety for learned models

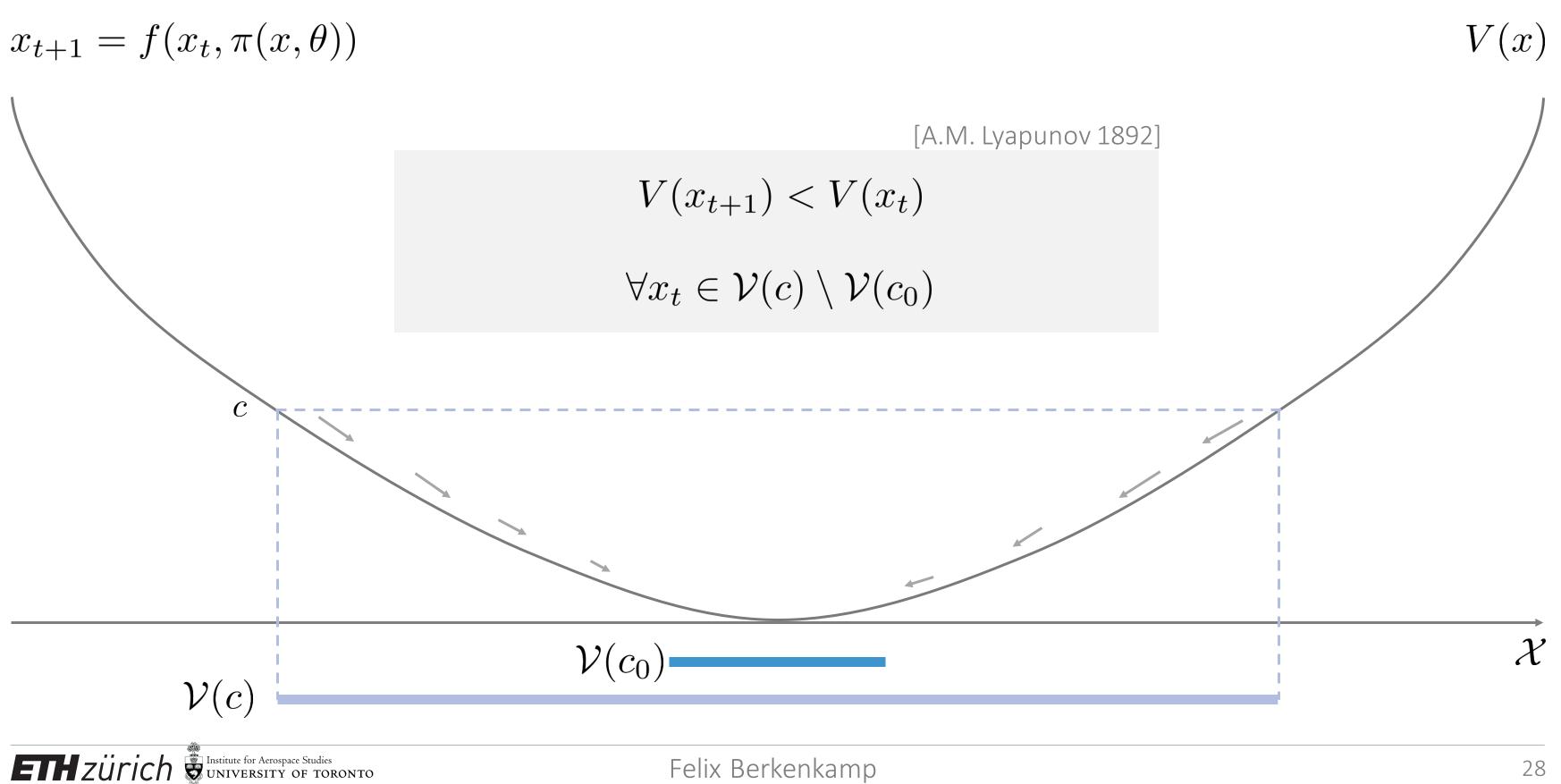


Felix Berkenkamp

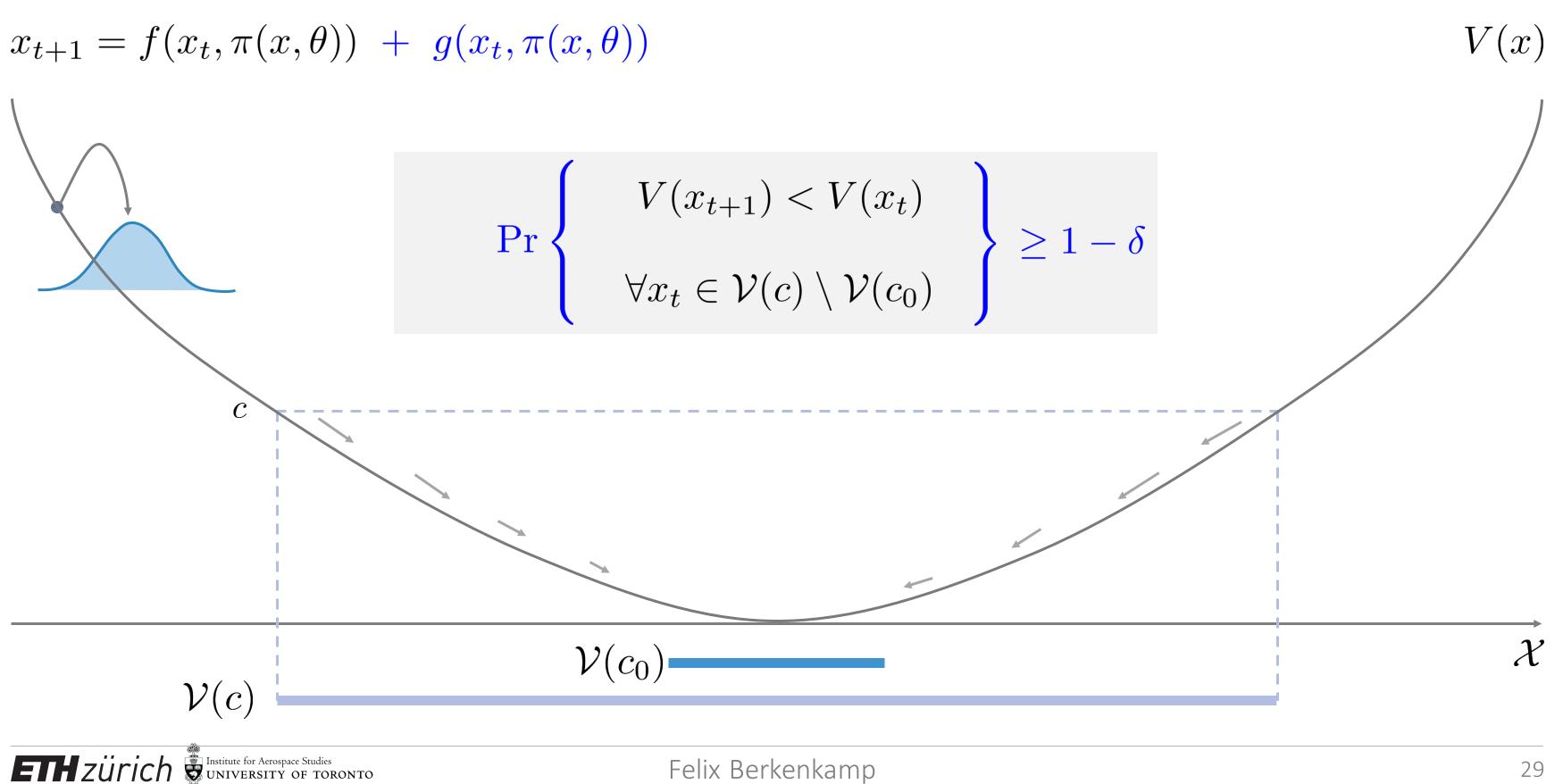
Policy $u_t = \pi(x_t)$

Stability? Region of attraction?

Lyapunov functions

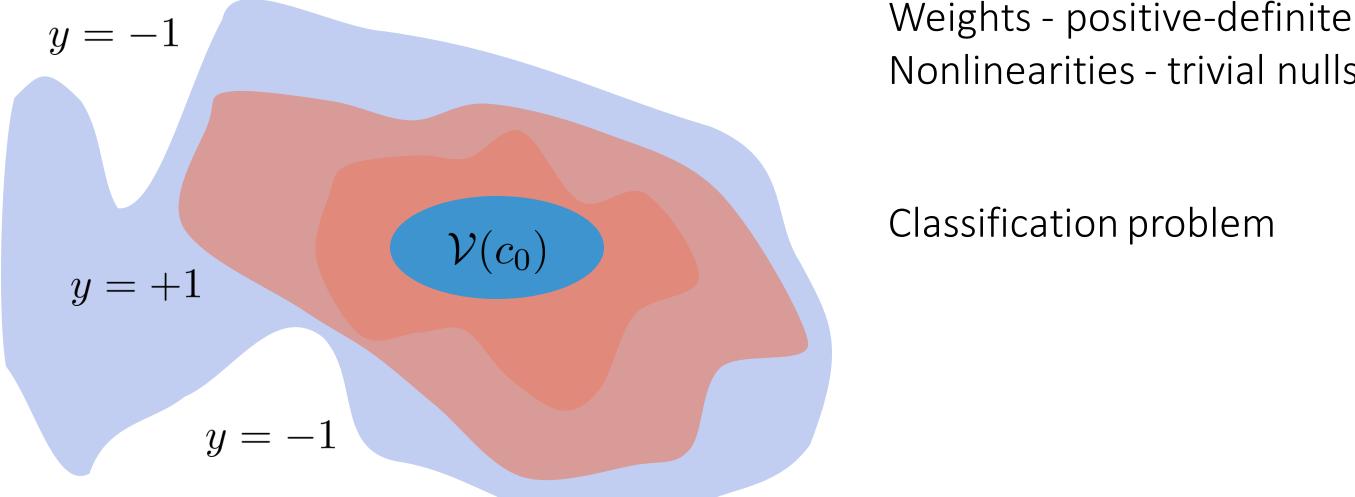


Lyapunov functions



Learning Lyapunov functions

 $V(x) = \phi_{\theta}(x)^{\mathrm{T}} \phi_{\theta}(x)$ Finding the right Lyapunov function is difficult!

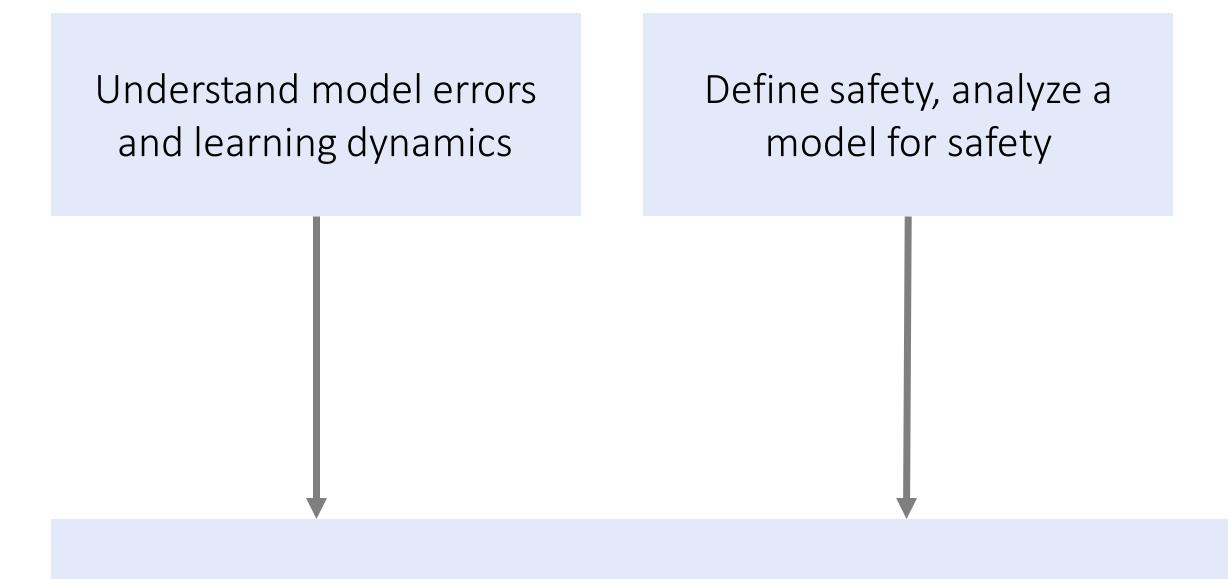


The Lyapunov Neural Network: Adaptive Stability Certification for Safe Learning of Dynamic Systems S.M. Richards, F. Berkenkamp, A. Krause, CoRL 2018

Felix Berkenkamp

Nonlinearities - trivial nullspace

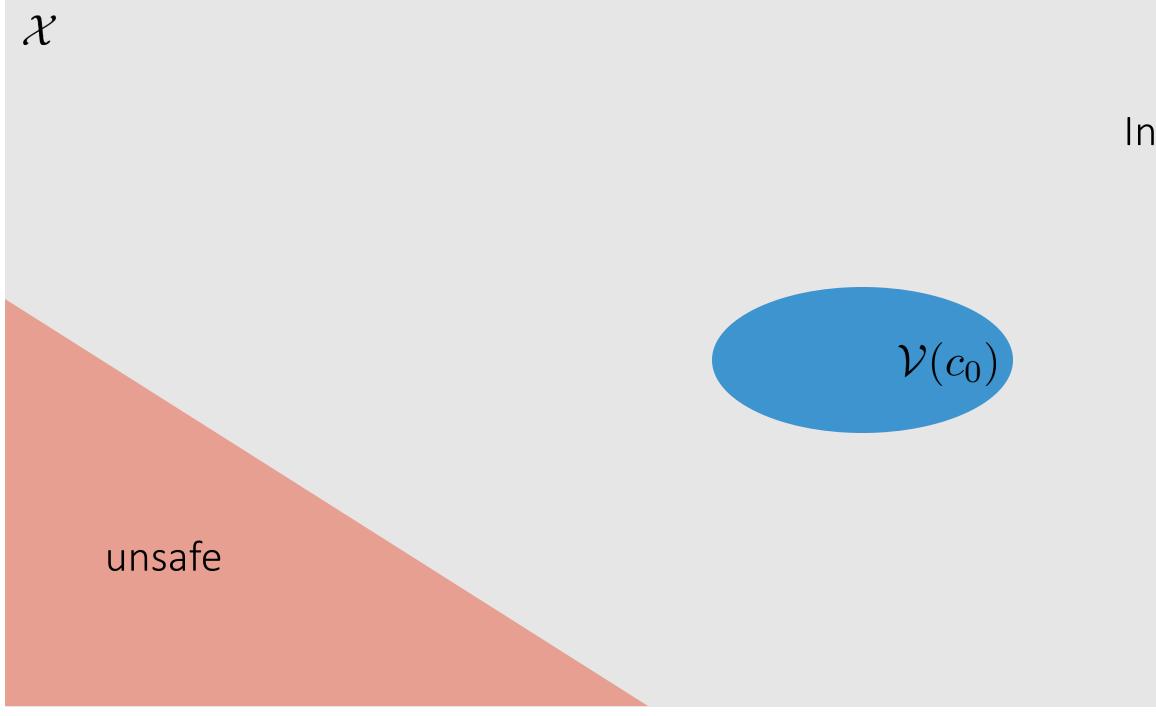
Overview



Safe Model-based Reinforcement Learning

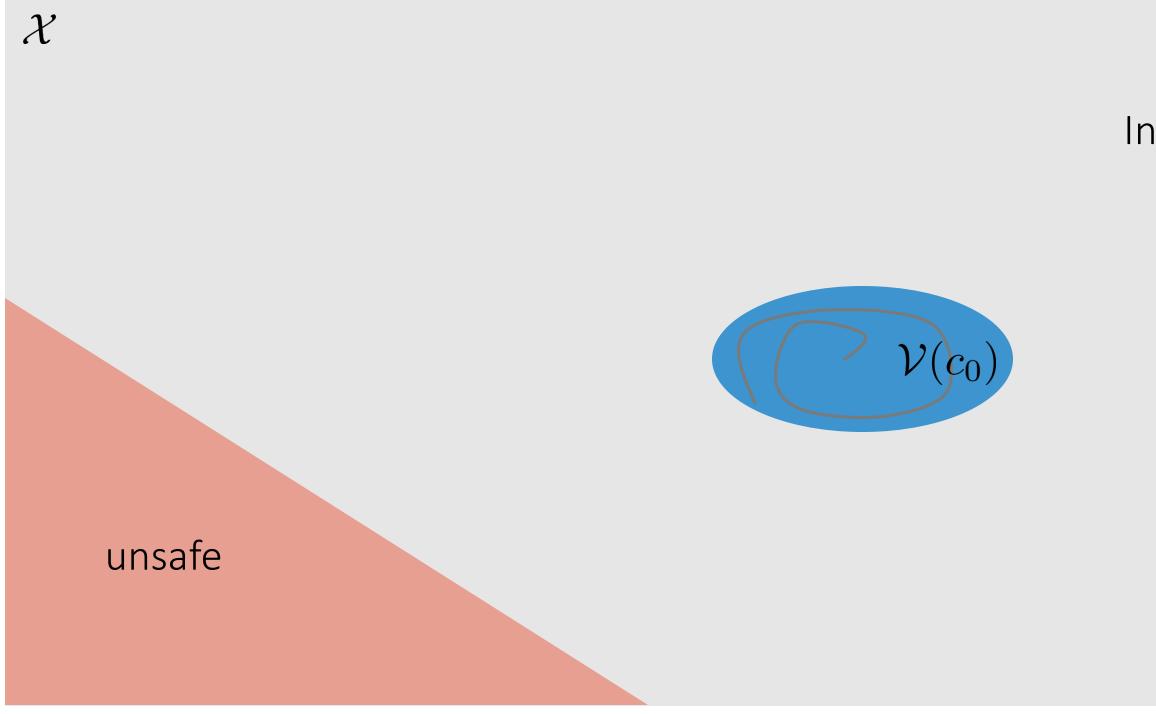
Felix Berkenkamp

Algorithm to safely acquire data and optimize task



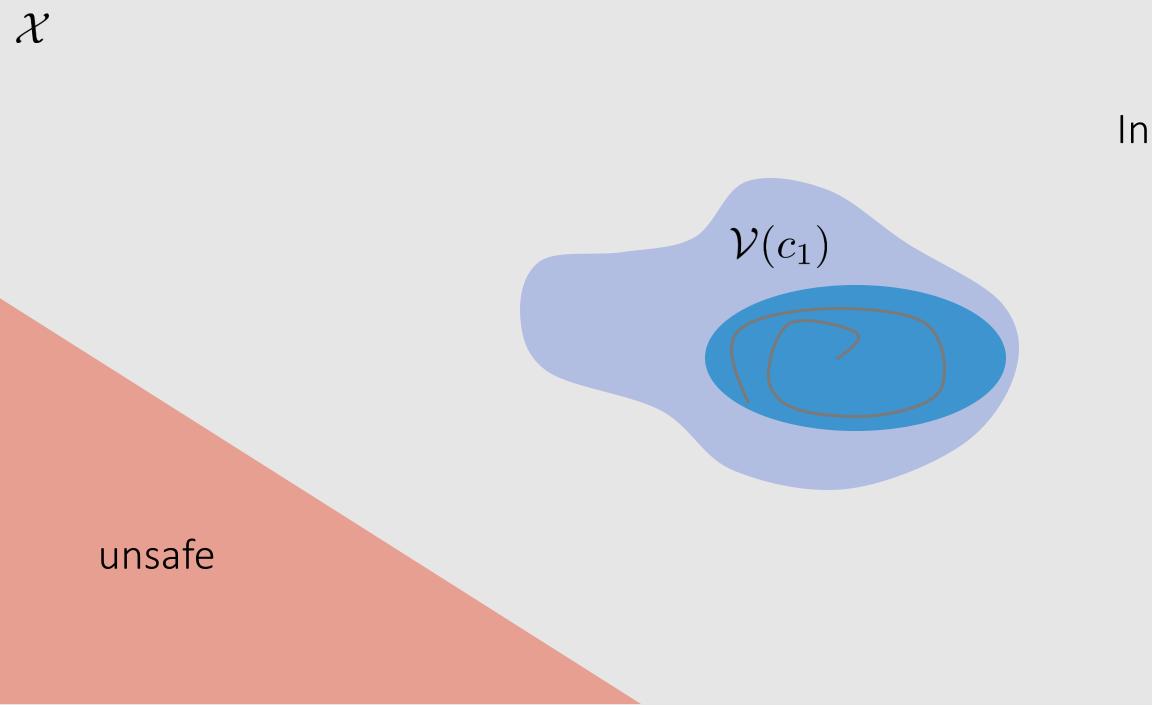
Felix Berkenkamp

Safe Model-based Reinforcement Learning with Stability Guarantees F. Berkenkamp, M. Turchetta, A.P. Schoellig, A. Krause, NIPS, 2017



Felix Berkenkamp

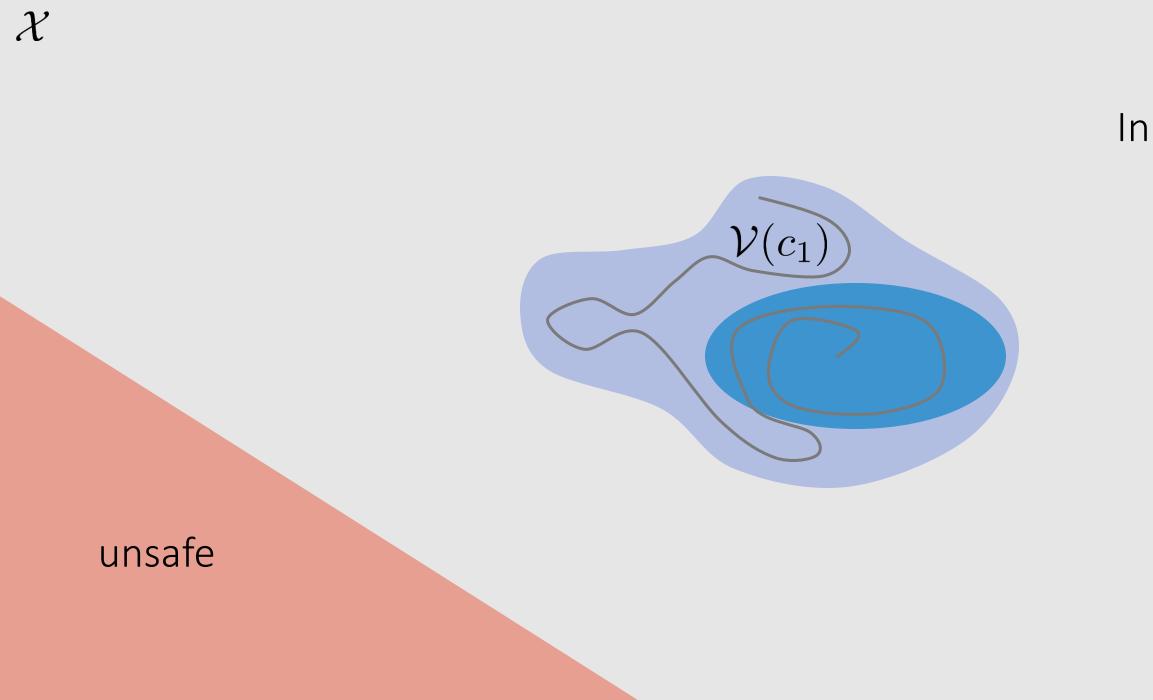
Safe Model-based Reinforcement Learning with Stability Guarantees F. Berkenkamp, M. Turchetta, A.P. Schoellig, A. Krause, NIPS, 2017



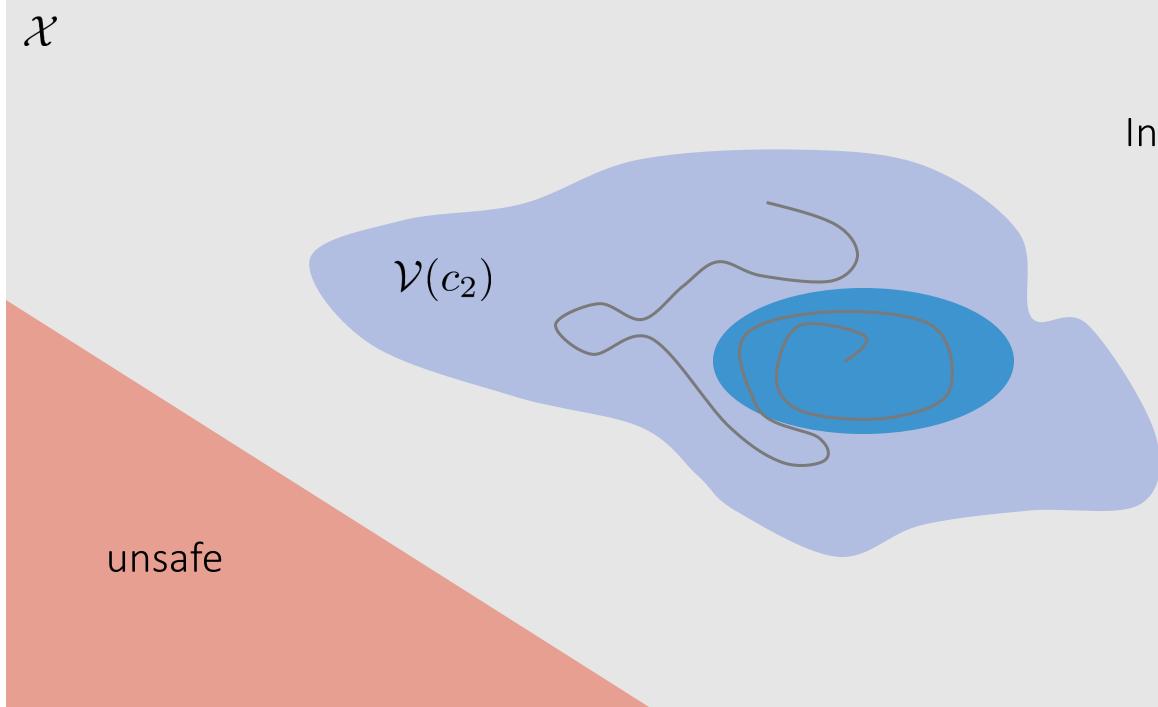
Felix Berkenkamp

Safe Model-based Reinforcement Learning with Stability Guarantees F. Berkenkamp, M. Turchetta, A.P. Schoellig, A. Krause, NIPS, 2017

Safe Model-based Reinforcement Learning with Stability Guarantees F. Berkenkamp, M. Turchetta, A.P. Schoellig, A. Krause, NIPS, 2017



Felix Berkenkamp

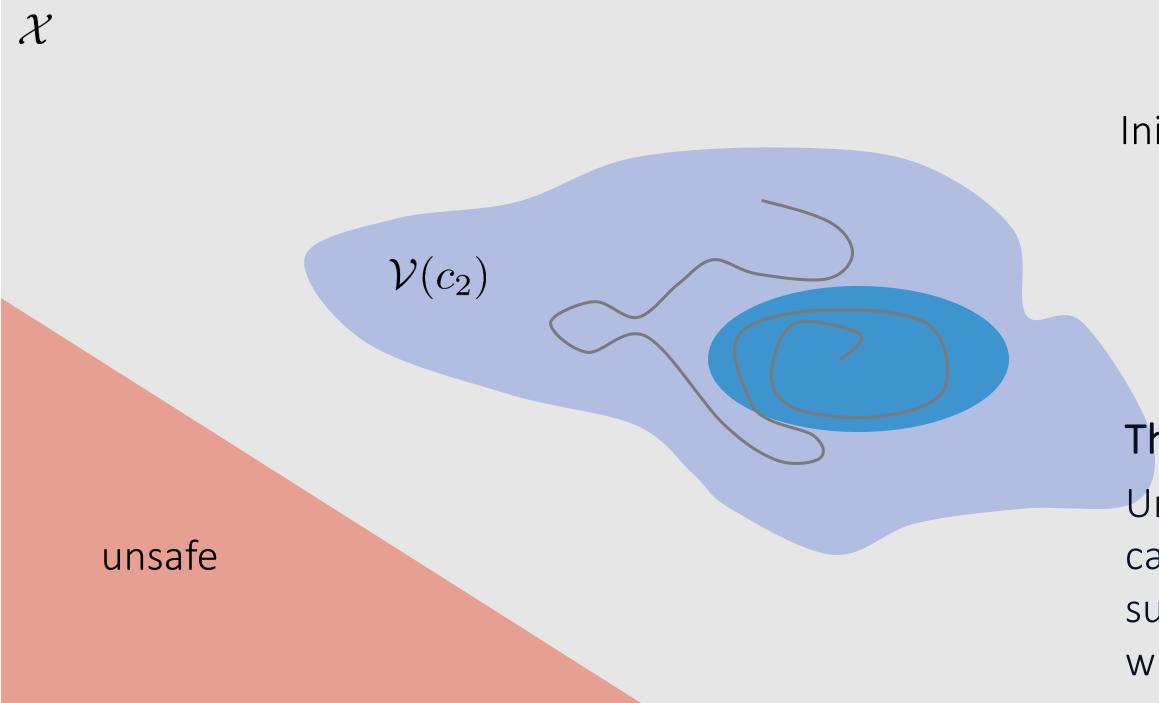


Felix Berkenkamp

Safe Model-based Reinforcement Learning with Stability Guarantees F. Berkenkamp, M. Turchetta, A.P. Schoellig, A. Krause, NIPS, 2017

Safety definition

Safe Model-based Reinforcement Learning with Stability Guarantees F. Berkenkamp, M. Turchetta, A.P. Schoellig, A. Krause, NIPS, 2017



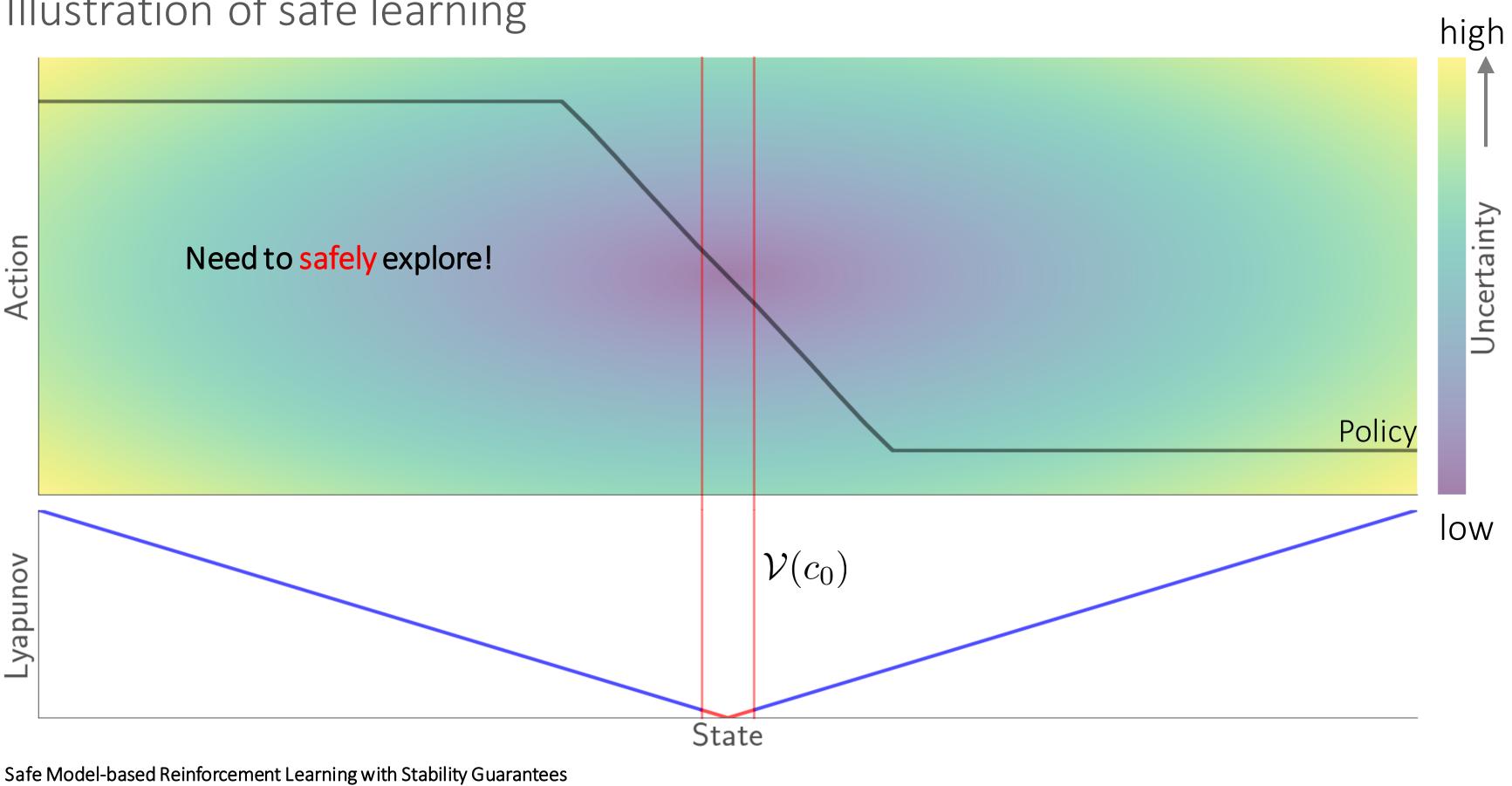
Felix Berkenkamp

Initial safe policy π

Theorem (informally):

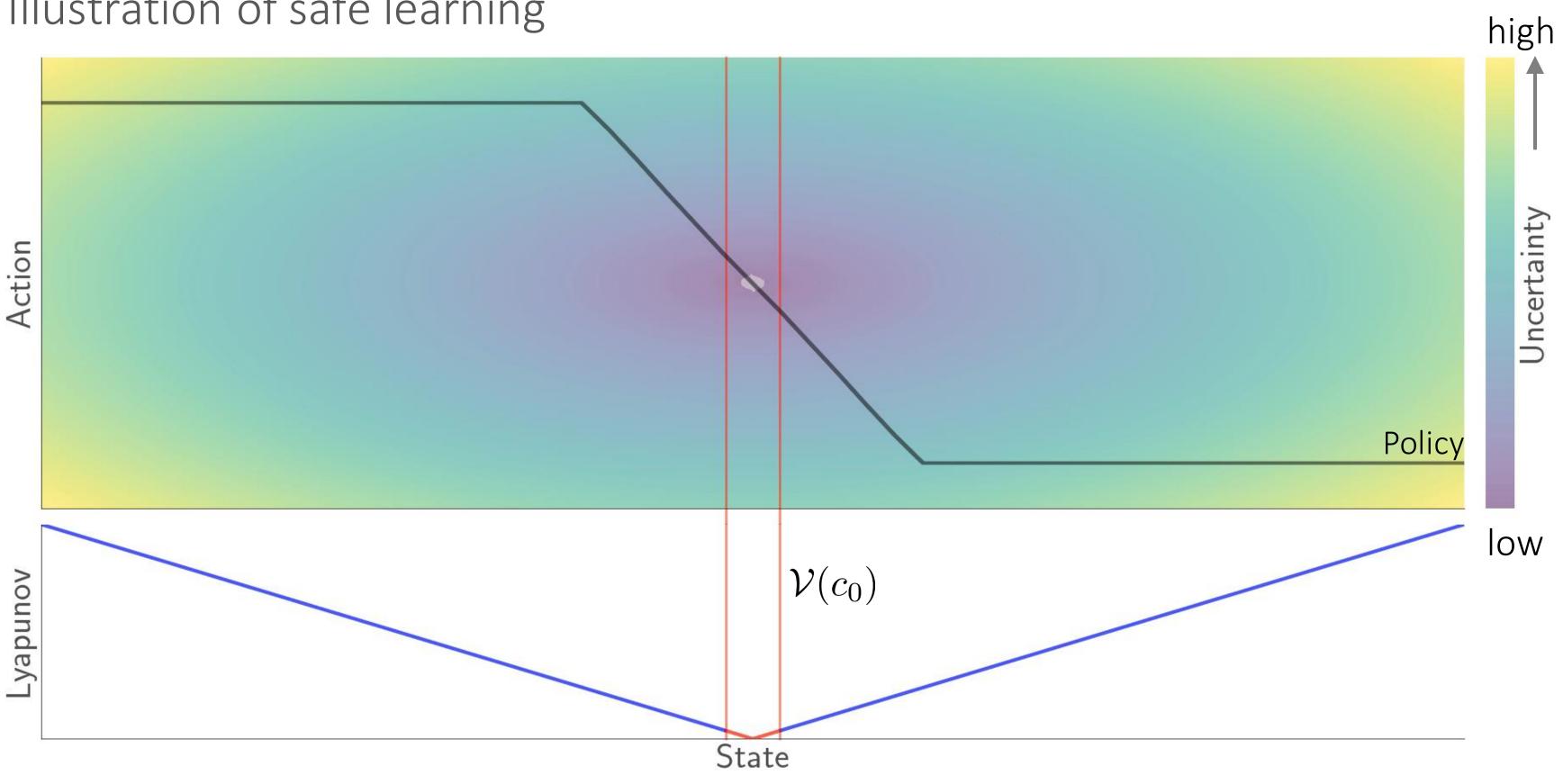
Under suitable conditions can identify (near-)maximal subset of X on which π is stable, while never leaving the safe set

Illustration of safe learning



F. Berkenkamp, M. Turchetta, A.P. Schoellig, A. Krause, NIPS, 2017

Illustration of safe learning



Safe Model-based Reinforcement Learning with Stability Guarantees

F. Berkenkamp, M. Turchetta, A.P. Schoellig, A. Krause, NIPS, 2017

Model predictive control

$$\begin{array}{ll} \underset{\{u_0,u_1,\ldots,u_{N-1}\}}{\text{minimize}} & \sum_{k=0}^{N-1} J(x_k,u_k) + J_N(x_N) & \text{missing} \\ \text{subject to} & x_0 = \overline{x}_0 \\ & x_{k+1} = f(x_k,u_k) & \text{syster} \\ & x_k \in \mathcal{X}_k & \text{state} \\ & u_k \in \mathcal{U}_k & \text{input} \end{array}$$

Makes decisions based on predictions about the future

Includes input / state constraints

- ion objective
- system state
- em dynamics
- e constraints
- it constraints

Model predictive control on a robot

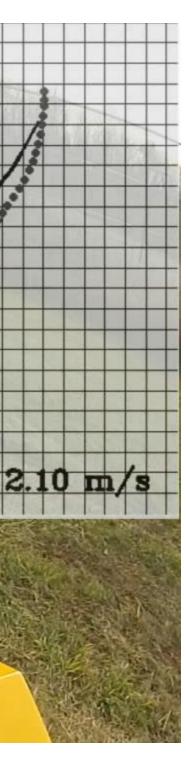
https://youtu.be/3xRNmNv5Efk

Overhead view:

1) Optimal predicted sequence -2) Robot position 3) Desired path vertices

Robust constrained learning-based NMPC enabling reliable mobile robot path tracking C.J. Ostafew, A.P. Schoellig, T.D. Barfoot, IJRR, 2016

Felix Berkenkamp



53

entex.

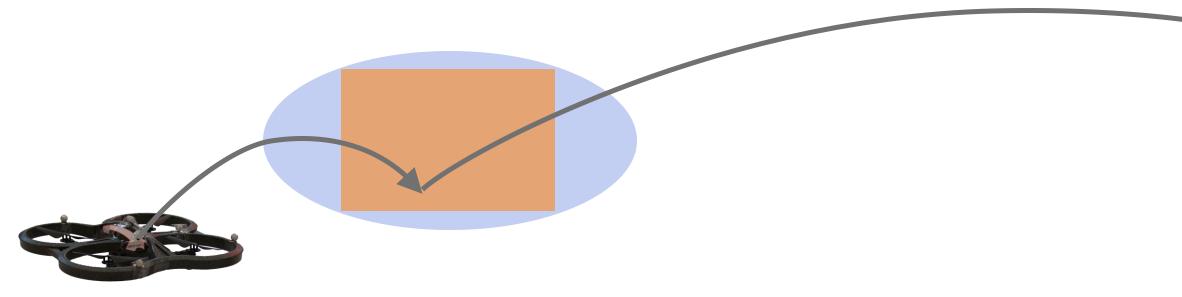
Model predictive control

$$\begin{array}{ll} \underset{\{u_0,u_1,\ldots,u_{N-1}\}}{\text{minimize}} & \sum_{k=0}^{N-1} J(x_k,u_k) + J_N(x_N) & \text{mission} \\ \\ \text{subject to} & x_0 = \overline{x}_0 & \text{syst} \\ & x_{k+1} = f(x_k,u_k) + g(x_k,u_k) & \text{system of} \\ & x_k \in \mathcal{X}_k & \text{state constant} \\ & u_k \in \mathcal{U}_k & \text{input constant} \end{array}$$

Problem: True dynamics f(x, u) + g(x, u) are unknown!

- objective
- stem state dynamics onstraints onstraints

Prediction under uncertainty

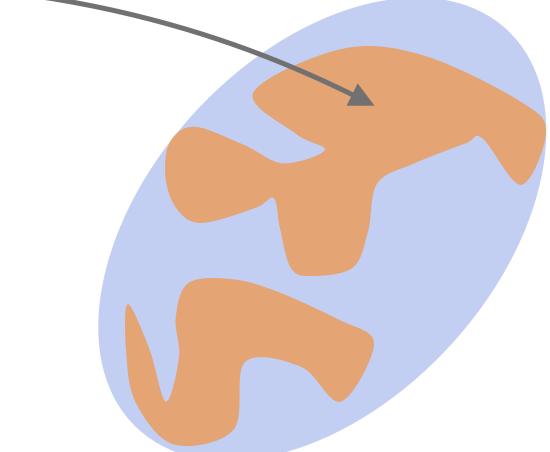


 $x_1 = f(x_0, u_0) + g(x_0, u_0)$ x_0

Outer approximation contains true dynamics for all time steps with probability at least $1-\delta$

ETHZÜRICH Institute for Aerospace Studies UNIVERSITY OF TORONTO

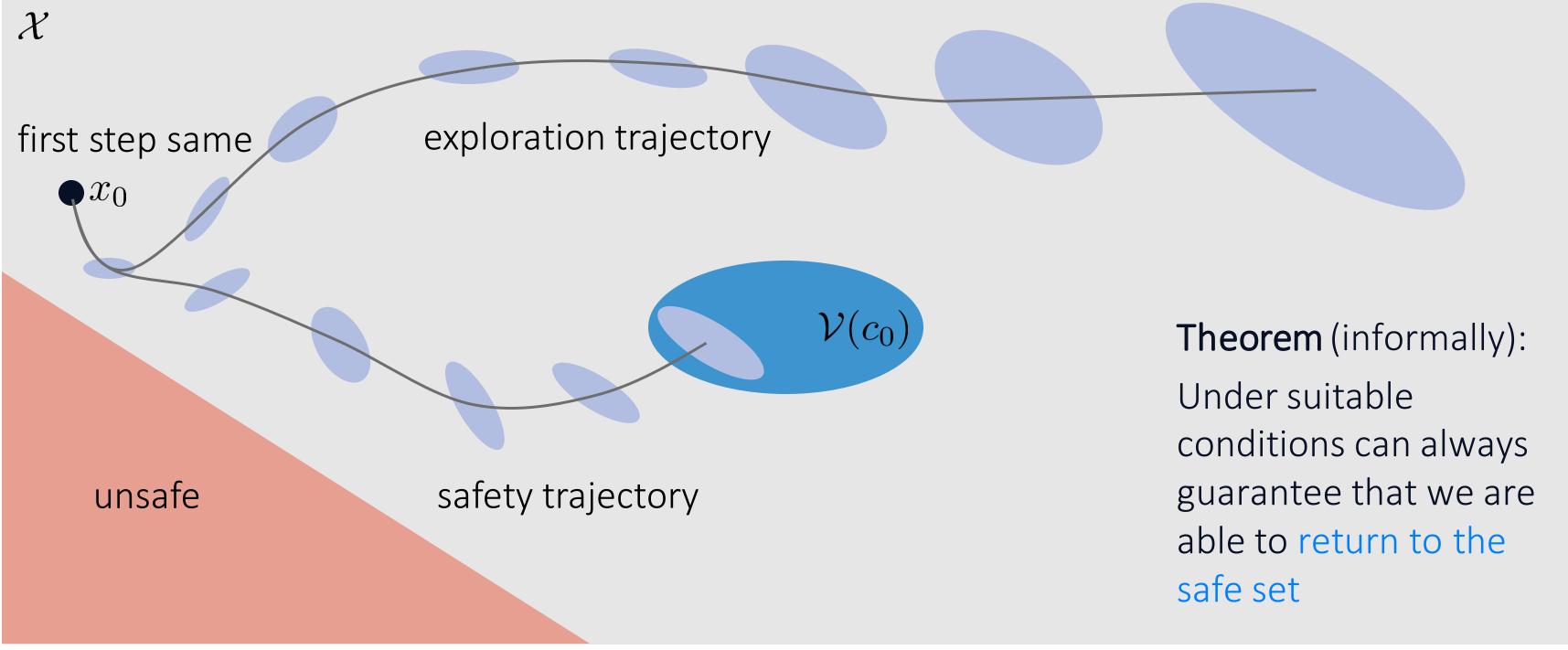
Felix Berkenkamp



 $x_2 = f(x_1, u_1) + g(x_1, u_1)$

Learning-based Model Predictive Control for Safe Exploration T. Koller, F. Berkenkamp, M. Turchetta, A. Krause, CDC, 2018

Safe model-based learning framework



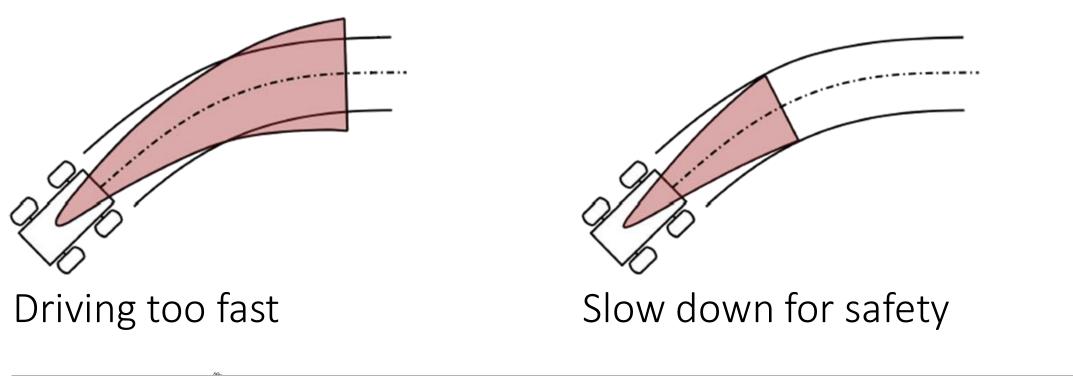
Exploration via expected performance

We design our cost functions to be helpful for optimization

Exploration objective:

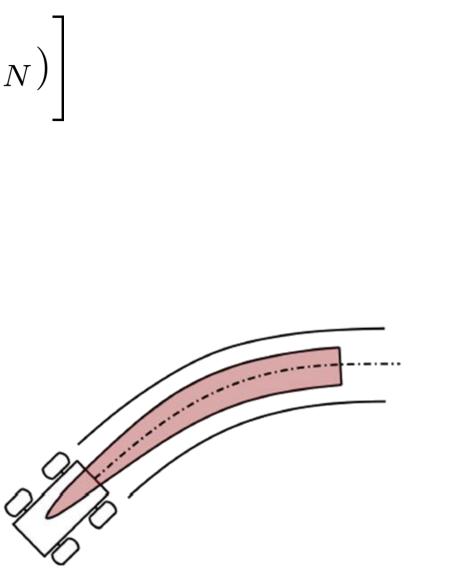
$$\min_{\{u_0, u_1, \dots, u_{N-1}\}} \mathbb{E} \left[\sum_{k=0}^{N-1} J(x_k, u_k) + J_N(x_k) \right]$$

subject to safety constraints



ETHZÜRICH Institute for Aerospace Studies UNIVERSITY OF TORONTO

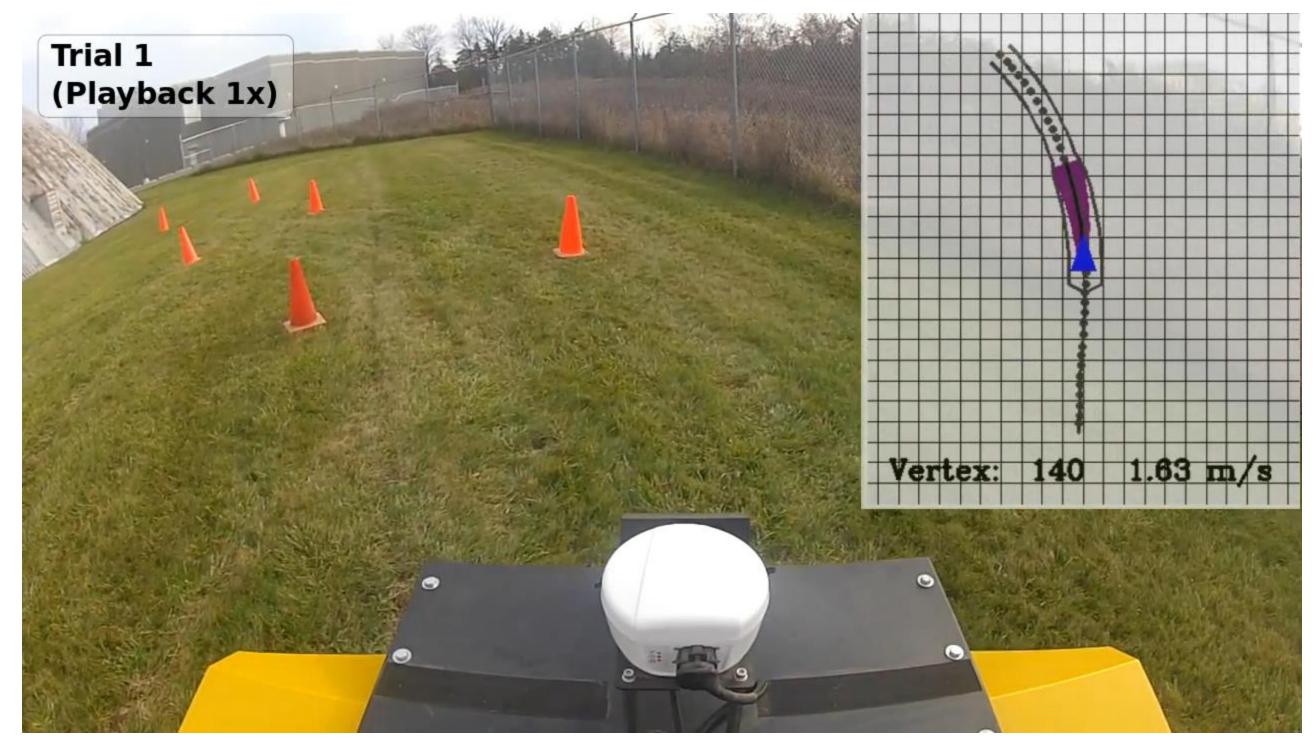
Felix Berkenkamp



Faster driving after learning

Example

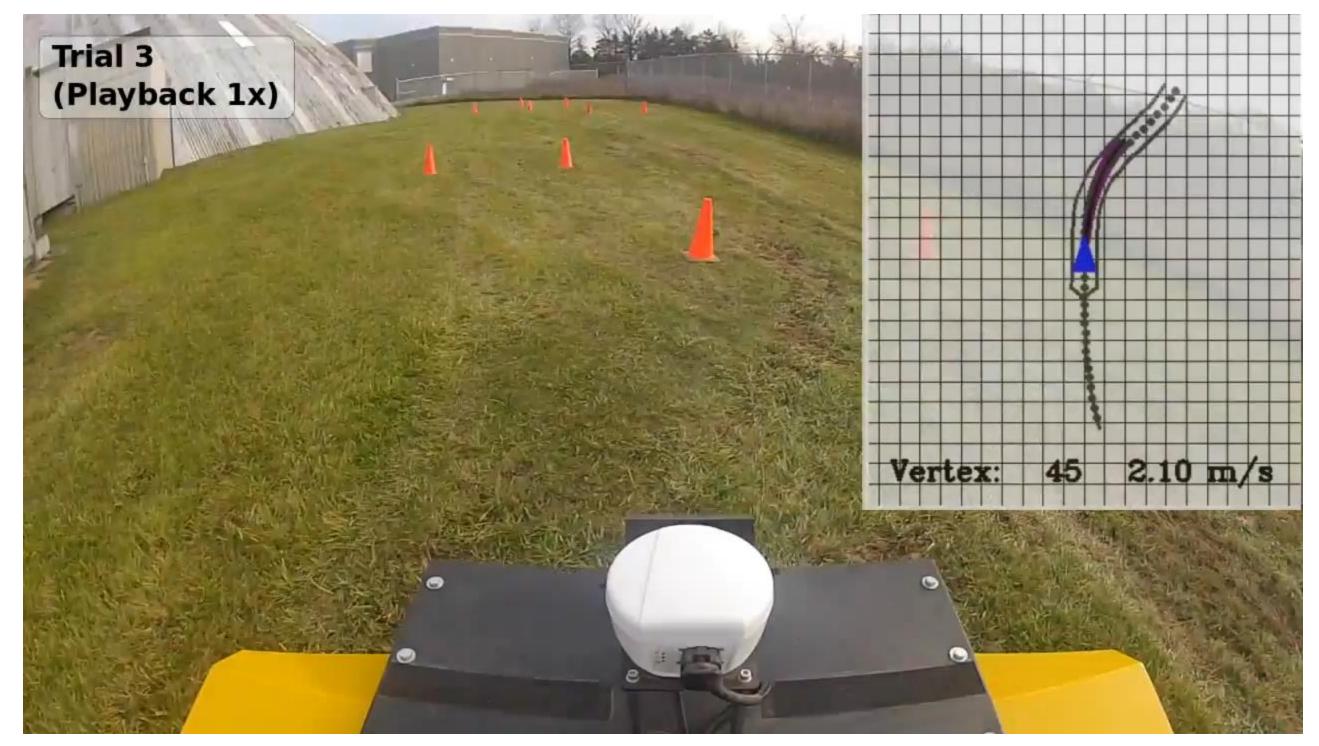
https://youtu.be/3xRNmNv5Efk



Robust constrained learning-based NMPC enabling reliable mobile robot path tracking C.J. Ostafew, A.P. Schoellig, T.D. Barfoot, IJRR, 2016

Example

https://youtu.be/3xRNmNv5Efk



Robust constrained learning-based NMPC enabling reliable mobile robot path tracking C.J. Ostafew, A.P. Schoellig, T.D. Barfoot, IJRR, 2016

Summary

Understand model and learning dynamics

Define safety, analyze a model for safety

RKHS / Gaussian processes

reliable confidence intervals

Lyapunov stability

stability of learned models

Safe Model-based Reinforcement Learning

https://berkenkamp.me

www.las.inf.ethz.ch

Felix Berkenkamp

Algorithm to safely acquire data and optimize task

Model predictive control

Uncertainty propagation, safe active learning

www.dynsyslab.org