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Iterative Learning Model Predictive Control
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Iterative Learning Model Predictive Control
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Now Available on Amazon
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Constrained Infinite-Time Optimal Control

“Solved” as..
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Repeated Solution of 
Constrained Finite Time Optimal Control

Predictive Controller: 
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Repeated Solution of 
Constrained Finite Time Optimal Control

Approximates the `tail' of the cost  
Approximates the `tail' of the constraints

N constrained by computation and forecast uncertainty
Robust and stochastic versions subject of current research
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Repeated Solution of 
Constrained Finite Time Optimal Control

Predictive Controller: 

Predictive Control: Theory & Computation 
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Repeated Solution of 
Constrained Finite Time Optimal Control

Predictive Controller: 

Predictive Control Classical Theory
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Terminal cost: 
Control Lyapunov function

Terminal constraint set: 
Control Invariant set

Predictive Control Theory: 
Sufficient conditions to guarantee

Convergence to the desired equilibrium point/region
Constraint satisfaction at all times

Control Invariant Set

Control Lyapunov Function
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Repeated Solution of 
Constrained Finite Time Optimal Control

Predictive Controller: 

Predictive Control Computation
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Offline π(∙) and Online π(x) Computation

Option 1 (Offline Based): “Complex” Offline, “Simple” Online

π0(∙) often piecewise constant or affine disturbance feedback

Dynamic Programing is one choice

Sampling model reduction/aggregation required for n>5

Option 2 (Online Based): “Simple” Offline, “Complex” Online

Compute on-line π 0(x(t)) with a “sophisticated” algorithm

Interior point method solver is one choice

Convexification required for real-time embedded control  
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Online Based

Excellent, (non-) convex open-source solvers 

Tailored solvers for embedded linear and nonlinear MPC

Offline Based

For linear and piecewise linear systems: explicit MPC

Mixing pre-computation and online-optimization

Suboptimal MPC

Fast Online Implementation on embedded FPGA, GPU

Analog MPC: microsecond sampling time

Major effort over the past 20 years for enlarging MPC 
application domain A very biased story
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Iterative Learning Model Predictive Control
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Three Forms of Learning
1 - Skill acquisition
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Three Forms of Learning
2 - Performance Improvement
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Three Forms of Learning
3 - Computation Load Reduction
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Three Forms of Learning.
Practice in order to:

Learning from demonstration
Transfer learning 
Learning from simulations

Iterative Learning Computational load 
reduction of control policy

Acquire a Skill Improve Performance Reduce Computational Load 
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Three Forms of Learning.
Practice in order to:

Learning from demonstration
Transfer learning 
Learning from simulations

Iterative Learning Computational reduction 
of control policy

Acquire a Skill Improve Performance Reduce Computational Load 
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Learning MPC Applied to Robo-Cars 
(instead of robo-soccer players..)
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Autonomous Cars @MPC Lab
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Autonomous Vehicles- Motion Control Through:

Acceleration, Braking, Steering
Also:

4 braking torques
Gear Ratio
Engine torque + front and rear distribution
4 dampers for active suspensions

Hyundai Genesis G70
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Static Nonlinearities: Tires

Inequality Constraints: Safety region 

Uncertain  Tire Model, Road  Friction, Obstacles

Nonlinear Dynamical System

Useful Model Abstraction

and



Borrelli (UC Berkeley) Iterative Learning MPC 2018  CDC– Slide 25

Tires and Road
Simplified Nonlinear Model

Slip Angle

Lateral Force
Dry Asphalt

Snow

Ice
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Berkeley Autonomous 1/10 Race Car Project
www.barc-project.com

Complete Open Source
Ubuntu, RoS, OpenCV, Julia, IPOPT
Camera, IMU, Ultrasounds, LIDAR
Cloud-Based
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Three Forms of Learning
1 - Skill acquisition
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Three Forms of Learning
2 - Performance Improvement
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Three Forms of Learning
3 - Computation Load Reduction

Average CPU Load  at each iteration

Lap Time at each iteration
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Three Forms of Learning

How we do this?

Model Predictive Control
A Simple Idea (which exploits the iterative nature of the tasks)

Important Design Steps

Acquire a Skill Improve Performance Reduce Computational Load 
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Iterative Learning Model Predictive Control
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One task execution referred to as “iteration” or “episode”
Same initial and terminal state at each iteration
Notation:

Iterative Tasks - Problem Setup
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Iterative Tasks - Problem Setup

One task execution referred to as “iteration” or “episode”
Same initial and terminal state at each iteration
Notation:
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Iterative Tasks - Problem Setup

One task execution referred to as “iteration” or “episode”
Same initial and terminal state at each iteration
Notation:
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Goal

Safety guarantees:

Constraint satisfaction at iteration j → satisfaction at iteration j+1

Performance improvement guarantees:

Closed loop cost at iteration j+1 ≤cost at iteration j

Learned from
data

Iterative Learning MPC
Incorporating data in advanced model based controller
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Learned from
data

Learning MPC
Incorporating data in advance model based controller

Simplification (general case later)

Known/nominal  model

Infinite Horizon Task

Uncertainty and model adaptation later (and at this conference)
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Learning Model Predictive Control (LMPC)

• Recursive feasibility
• Iterative feasibility
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Iteration 0

Assume at iteration 0 the closed-loop trajectory is feasible
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Iteration 0

Assume at iteration 0 the closed-loop trajectory is feasible

Fact

is  a control invariant



Borrelli (UC Berkeley) Iterative Learning MPC 2018  CDC– Slide 46

Iteration 1, Step 0

Use SS0 as terminal set at Iteration 1
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Iteration 1, Step 0

Use SS0 as terminal set at Iteration 1
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Iteration 1, Step 1

Use SS0 as terminal set at Iteration 1
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Iteration 1, Step 1

Use SS0 as terminal set at Iteration 1
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Iteration 1, Step 2

Use SS0 as terminal set at Iteration 1
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Iteration 1, Step 2

Use SS0 as terminal set at Iteration 1
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Iteration 1, Step 3

Use SS0 as terminal set at Iteration 1
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Iteration 1, Step 4

Use SS0 as terminal set at Iteration 1
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Iteration 2 Safe Set
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Constructing the terminal set
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Terminal Set : Convex all of Sample Safe Set

for Constrained Linear Dynamical  Systems 
is a Control Invariant Set



Borrelli (UC Berkeley) Iterative Learning MPC 2018  CDC– Slide 57

Learning Model Predictive Control (LMPC)

• Convergence
• Performance 

improvement
• Local optimality
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Terminal Cost at Iteration 0
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Terminal Cost at Iteration 0

A control Lyapunov “function”
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Terminal Cost at the j-th iteration

≡

Define

Compute 
terminal cost as
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Terminal Cost: Barycentric Approximation of Q() 

Control Lyapunov 
Function

(for Constrained Linear Dynamical  
Systems)
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ILMPC Summary

MPC strategy:

Optimize over inputs and lambdas
For  constrained  linear  systems

Safety guarantees:
- Constraint satisfaction at iteration j=> satisfaction at iteration j+1

Performance improvement guarantees:
- Closed loop cost at iteration j >= cost at iteration j+1

Convergence to global optimal solution
Constraint qualification conditions required for cost decrease
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Performance Improvement Proof         

Conjecture

Notation

Closed-loop state and input trajectory at iteration j
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Step 1:

Performance Improvement Proof
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Performance Improvement Proof

Step 1:
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Performance Improvement Proof

Step 1:
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Performance Improvement Proof


Step 1:
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Performance Improvement Proof

Step 1:

Step 2:



Borrelli (UC Berkeley) Iterative Learning MPC 2018  CDC– Slide 69

Performance Improvement Proof

Step 1:

Step 2:
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Performance Improvement Proof

Step 1:

Step 2:
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Performance Improvement Proof
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Iterative Learning MPC

Optimize over inputs and lambdas

Simple proofs 

For constrained linear systems

Safety and Performance improvement guarantees

Convergence to global optimal solution (for linear

Constraint qualification conditions required for cost decrease

If full column rank, 
improvement cannot be 
obtained
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Control objective

System dynamics
System constraints

Starting Position

Constrained LQR Example
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Control objective

System dynamics
System constraints

Terminal Constraint

Initial Condition

Iterative LMPC with horizon N=2

Will not work!

Will work if one sets N=3
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Comparison with R.L.??

RL term too broad
Two good references:

Bertsekas paper connecting MPC and ADP*
Lewis and Vrabile survey on CSM**
Recht survey (section 6): https://arxiv.org/abs/1806.09460

ILMPC highlights
Continuous state formulation
Constraints satisfaction and Sampled Safe Sets
Q-function constructed (learned)  locally  based  on  cost/model  

driven exploration and past trails
Q-function at stored state is “exact” and lowerbounds property 

at intermediate points (for convex problems)
*Dynamic Programming and Suboptimal Control: A 
Survey from ADP to MPC
**Reinforcement Learning and Adaptive Dynamic 
Programming for Feedback Control

https://arxiv.org/abs/1806.09460
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About Model Learning in Racing
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Autonomous Racing Control Problem

Start & end position

System dynamics
System constraints

Obstacle avoidance

Control objective
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Learning Model Predictive Control (LMPC)
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Learning Process

The lap time decreases until the LMPC converges to a set of trajectories
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Learning Model Predictive Control (LMPC)
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Nonlinear Dynamical System

Useful Vehicle Model Abstraction
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Nonlinear Dynamical System

Useful Vehicle Model Abstraction

Kinematic Equations
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Nonlinear Dynamical System

Useful Vehicle Model Abstraction

Kinematic Equations

Identifying the Dynamical System

Linearization around predicted trajectory
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Nonlinear Dynamical System

Useful Vehicle Model Abstraction

Kinematic Equations

Dynamic Equations

Identifying the Dynamical System
Local Linear Regression

Linearization around predicted trajectory
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Useful Vehicle Model Abstraction

Identifying the Dynamical System

Important Design Steps
1. Compute  trajectory to linearize around uses previous optimal inputs and 

inputs in the safe set
2. Enforce model-based sparsity in local linear regression

Local Linear Regression

Linearization around predicted trajectory
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Nonlinear Dynamical System

Useful Vehicle Model Abstraction

The velocity update is not affected by Position and Acceleration command
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Useful Vehicle Model Abstraction

Identifying the Dynamical System

Important Design Steps
1. Compute  trajectory to linearize aroundpusing previous optimal inputs 

and inputs in the safe set
2. Enforce model-based sparsity in local linear regression
3. Use data close to current state trajectory for parameter ID
4. Use kernel K() to weight differently data as a function of distance to 

linearized trajectory

Local Linear Regression

Linearization around predicted trajectory
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Accelerations
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Results

Gain from steering to lateral velocity
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About Model Learning Ball in Cup
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Ball in a Cup System with MuJoCo
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Ball in a Cup Control Problem

Start & end position

System dynamics
System constraints

Obstacle avoidance

Control objective
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Learning Model Predictive Control (LMPC)
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Useful Mujoco Model Abstraction

Identifying the Dynamical System
Local Linear Regression

Linearization around predicted trajectory

Important Design Steps
1. Compute  trajectory to linearize aroundpusing previous optimal inputs 

and inputs in the safe set
2. Enforce model-based sparsity in local linear regression
3. Use data close to current state trajectory for parameter ID
4. Use kernel K() to weight differently data as a function of distance to 

linearized trajectory
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Ball in a Cup System

At iteration 0 find a sequence by sampling parametrized inputs 
profiles (takes 5mins) 

Use ILMPC: At iteration 1, time reduced of 10%, cup height 
movement reduced of 35%
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Back to our main chart..
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Three Forms of Learning

Skill acquisition Performance improvement

How we do this?

Model Predictive Control +
A Simple Idea +
Good Practices

Reduce load for
Routine Execution



Borrelli (UC Berkeley) Iterative Learning MPC 2018  CDC– Slide 103

Offline π(∙) and Online π(x) Computation

Option 1 (Offline Based): “Complex” Offline, “Simple” Online

π(∙) often Piecewise Constant (except special classes)

Dynamic Programing is one choice

Basic rule:  n>5 impossible

Option 2 (Online Based): “Simple” Offline, “Complex” Online

Compute on-line π(x) with a “sophisticated” algorithm

Interior point method solver is one choice

Basic Rule: avoid use `home-made’ solvers
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One Simple Way: Data-Based Policy for π(∙)
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One Simple Way: Data-Based Policy for π(∙)

Historical data
of converged iterations
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Three Forms of Learning
3 - Computation Load Reduction

Average CPU Load  at each iteration

Lap Time at each iteration
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Experimental Results

Factor of 10
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Data Based Policy: Alternatives

Nearest Neighbor
Train ReLU Neural Network
Local Explicit MPC

All Continuous Piecewise Affine Policies
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Learned from
data

Learning MPC
Incorporating data in advance model based controller

In Practice

Noise and model uncertainty: Robust case

What about noise and model uncertainty?
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ILMPC – Robust and Adaptive design
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At Iteration 0

Linear System

Terminal Goal Set

Successful Iteration
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At Iteration 1

CVX hull is not a robust invariant!
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ILMPC – Robust and Adaptive design

Robust invariants

“Robustify” Q-function (and dualize for computational 
efficiency)

Chance constraints

See my group papers at this conference if 
interested..
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For  Iterative tasks I discussed

By using Iterative learning MPC, i.e.

Model Predictive Control
A Simple Idea 
(which exploits the iterative nature of the tasks)

A Few Important Design Steps

How to obtain performance improvement and reduced computational 
load while satisfying constraints
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The End


