Iterative Learning Model Predictive Control

Francesco Borrelli

Email: fborrelli@berkeley.edu University of California Berkeley, USA

www.mpc.berkeley.edu

Borrelli (UC Berkeley)

Iterative Learning MPC

Acknowledgements

Learning MPC: Ugo Rosolia

Adaptive MPC: Monimoy Bujarbaruah, George Xiaojing Zhang Autonomous Drift: Edo Jelavick, George Xiaojing Zhang Analog Optimization: Sergey Vicky Autonomous Drift: Edo Jelavick, Yuri Glauthier Analog Optimization: Sergey Vicky Connected Cars: Jacopo Guanetti, Jongsang Suh, Roya Firoozi, Yeojun Kim , Eric Choi BARC: Jon Gonzales, Tony Zeng, Charlott Vallon

Research Sponsors:

Hyundai Corporation

Ford Research Labs, Siemens, Mobis, Komatzu

National Science Foundation

Office of Naval Research

Iterative Learning Model Predictive Control

Borrelli (UC Berkeley)

Iterative Learning MPC

Iterative Learning Model Predictive Control

Borrelli (UC Berkeley)

Iterative Learning MPC

Now Available on Amazon

Borrelli (UC Berkeley)

Constrained Infinite-Time Optimal Control

$$J_0^*(x(0)) = \min_{\pi_0, \pi_1, \dots} \sum_{k=0}^{\infty} h(x_k, u_k)$$

s.t. $x_{k+1} = f(x_k, u_k)$
 $u_k = \pi_k(x_k)$
 $x_k \in \mathcal{X}, u_k \in \mathcal{U},$
 $x_0 = x(0)$

 $\pi_k(\cdot)$ Feedback Control Policies: $\pi_k: x_k \in \mathcal{X} \mapsto u_k \in \mathcal{U}$

"Solved" as..

$$\min_{\pi_0,\pi_1,\dots,\pi_{N-1}} p(x_{t+N}) + \sum_{k=0}^{N-1} h(x_{t+k}, u_{t+k})$$

subj. to
$$k = t, \dots, t+N-1 \begin{cases} x_{k+1} = f(x_k, u_k) \\ u_k = \pi_k(x_k) \\ u_k \in \mathcal{U}, x_k \in \mathcal{X} \\ x_{t+N} \in \mathcal{X}_f \\ x_t = x(t) \end{cases}$$

 $\pi_k(\cdot)$ Feedback Control Policies: $\pi_k: x_k \in \mathcal{X} \mapsto u_k \in \mathcal{U}$

Predictive Controller: $u(t) = \pi_0^*(x(t))$

$$\min_{\pi_0,\pi_1,\dots,\pi_{N-1}} p(x_{t+N}) + \sum_{k=0}^{N-1} h(x_{t+k}, u_{t+k})$$

subj. to
$$k = t, \dots, t+N-1 \begin{cases} x_{k+1} = f(x_k, u_k) \\ u_k = \pi_k(x_k) \\ u_k \in \mathcal{U}, x_k \in \mathcal{X} \\ x_{t+N} \in \mathcal{X}_f \\ x_t = x(t) \end{cases}$$

 $\pi_k(\cdot)$ Feedback Control Policies: $\pi_k: x_k \in \mathcal{X} \mapsto u_k \in \mathcal{U}$

- $p(\cdot)$ Approximates the `tail' of the cost
- \mathcal{X}_{f} Approximates the `tail' of the constraints
- N constrained by computation and forecast uncertainty
- Robust and stochastic versions subject of current research

$$\min_{\pi_0,\pi_1,\dots,\pi_{N-1}} p(x_{t+N}) + \sum_{k=0}^{N-1} h(x_{t+k}, u_{t+k})$$

subj. to
$$k = t, \dots, t+N-1 \begin{cases} x_{k+1} = f(x_k, u_k) \\ u_k = \pi_k(x_k) \\ u_k \in \mathcal{U}, x_k \in \mathcal{X} \\ x_{t+N} \in \mathcal{X}_f \\ x_t = x(t) \end{cases}$$

 $\pi_k(\cdot)$ Feedback Control Policies: $\pi_k: x_k \in \mathcal{X} \mapsto u_k \in \mathcal{U}$

Predictive Controller: $u(t) = \pi_0^*(x(t))$

Predictive Control: Theory & Computation

Borrelli (UC Berkeley)

Iterative Learning MPC

$$\min_{\pi_0,\pi_1,\dots,\pi_{N-1}} p(x_{t+N}) + \sum_{k=0}^{N-1} h(x_{t+k}, u_{t+k})$$

subj. to
$$k = t, \dots, t+N-1 \begin{cases} x_{k+1} = f(x_k, u_k) \\ u_k = \pi_k(x_k) \\ u_k \in \mathcal{U}, x_k \in \mathcal{X} \\ x_{t+N} \in \mathcal{X}_f \\ x_t = x(t) \end{cases}$$

 $\pi_k(\cdot)$ Feedback Control Policies: $\pi_k: x_k \in \mathcal{X} \mapsto u_k \in \mathcal{U}$

Predictive Controller: $u(t) = \pi_0^*(x(t))$

Predictive Control Classical Theory

Borrelli (UC Berkeley)

Iterative Learning MPC

Predictive Control Theory: Sufficient conditions to guarantee

Convergence to the desired equilibrium point/region
 Constraint satisfaction at all times

$$\min_{\substack{\pi_0, \pi_1, \dots, \pi_{N-1} \\ \text{subj. to} \\ k = t, \dots, t+N-1}} \sum_{k=0}^{N-1} h(x_{t+k}, u_{t+k}) + p(x_{t+N})$$
$$\begin{cases} x_{k+1} = f(x_k, u_k) \\ u_k = \pi_k(x_k) \\ u_k \in \mathcal{U}, x_k \in \mathcal{X} \\ x_{t+N} \in \mathcal{X}_f \\ x_t = x(t) \end{cases}$$

Terminal cost: Control Lyapunov function

Terminal constraint set: Control Invariant set

Control Invariant Set

$$x_0 \in \mathcal{X}_f \to \exists u_k \in \mathcal{U} : f(x_k, u_k) \in \mathcal{X}_f \ \forall k > 0$$

Control Lyapunov Function

 $\min_{u \in \mathcal{U}, f(x,u) \in \mathcal{X}_f} (p(f(x,u)) - p(x) + h(x,v)) \le 0, \ \forall x \in \mathcal{X}_f$

Borrelli (UC Berkeley)

$$\min_{\pi_0,\pi_1,\dots,\pi_{N-1}} p(x_{t+N}) + \sum_{k=0}^{N-1} h(x_{t+k}, u_{t+k})$$

subj. to
$$k = t, \dots, t+N-1 \begin{cases} x_{k+1} = f(x_k, u_k) \\ u_k = \pi_k(x_k) \\ u_k \in \mathcal{U}, x_k \in \mathcal{X} \\ x_{t+N} \in \mathcal{X}_f \\ x_t = x(t) \end{cases}$$

 $\pi_k(\cdot)$ Feedback Control Policies: $\pi_k: x_k \in \mathcal{X} \mapsto u_k \in \mathcal{U}$

Predictive Controller: $u(t) = \pi_0^*(x(t))$

Predictive Control Computation

Borrelli (UC Berkeley)

Offline $\pi(\cdot)$ and Online $\pi(x)$ Computation

$$\min_{\pi_0(\cdot),\pi_1(\cdot),\dots,\pi_{N-1}(\cdot)} J_{0\to N}(x_0,\Pi)$$

subj. to
$$k = 0,\dots,N-1 \begin{cases} x_{k+1} = f(x_k, u_k, w_k) \\ u_k = \pi_k(x_k) \\ u_k \in \mathcal{U}, x_k \in \mathcal{X}, \quad \forall w_k \in \mathcal{W} \end{cases}$$

 $\pi_k(\cdot)$ Feedback Control Policies: $\pi_k: x_k \in \mathcal{X} \mapsto u_k \in \mathcal{U}$

Option 1 (Offline Based): "Complex" Offline, "Simple" Online

- $\pi_0(\cdot)$ often piecewise constant or affine disturbance feedback
- Dynamic Programing is one choice
- Sampling model reduction/aggregation required for n>5

Option 2 (*Online Based*): "Simple" Offline, "Complex" Online

- Compute on-line $\pi_0(x(t))$ with a "sophisticated" algorithm
- Interior point method solver is one choice
- Convexification required for real-time embedded control

Major effort over the past 20 years for enlarging MPCapplication domainA very biased story

- Online Based
 - Excellent, (non-) convex open-source solvers
 - Tailored solvers for embedded linear and nonlinear MPC
- Offline Based
 - For linear and piecewise linear systems: explicit MPC
- Mixing pre-computation and online-optimization
- Suboptimal MPC
- Fast Online Implementation on embedded FPGA, GPU
- Analog MPC: microsecond sampling time

Iterative Learning Model Predictive Control

Borrelli (UC Berkeley)

Iterative Learning MPC

Three Forms of Learning 1 - Skill acquisition

Borrelli (UC Berkeley)

Iterative Learning MPC

Three Forms of Learning 2 - Performance Improvement

Three Forms of Learning **3 - Computation Load Reduction**

Three Forms of Learning. Practice in order to:

Three Forms of Learning. Practice in order to:

Acquire a Skill

Improve Performance

Reduce Computational Load

Learning from demonstration Transfer learning Learning from simulations

Iterative Learning

Computational reduction of control policy

Iterative Learning MPC

Learning MPC Applied to Robo-Cars (instead of robo-soccer players..)

Borrelli (UC Berkeley)

Iterative Learning MPC

Autonomous Cars @MPC Lab

Borrelli (UC Berkeley)

Iterative Learning MPC

Autonomous Vehicles- Motion Control Through:

Hyundai Genesis G70

- Acceleration, Braking, Steering
- Also:
 - 4 braking torques
 - Gear Ratio
 - Engine torque + front and rear distribution
 - 4 dampers for active suspensions

Borrelli (UC Berkeley)

Iterative Learning MPC

Useful Model Abstraction

• Static Nonlinearities: Tires

$$egin{aligned} & \mathsf{F}_y = \mathit{f}_y(lpha, \sigma, \mu, \mathsf{F}_z) \ \mathsf{F}_x = \mathit{f}_x(lpha, \sigma, \mu, \mathsf{F}_z) \end{aligned} ext{ and } \sqrt{F_x^2 + F_y^2} <= mg \end{aligned}$$

Inequality Constraints: Safety region

• Uncertain Tire Model, Road Friction, Obstacles

Tires and Road Simplified Nonlinear Model

Berkeley Autonomous 1/10 Race Car Project www.barc-project.com

RC Car Racing Meets Cloud Computing

- Complete Open Source
- Ubuntu, RoS, OpenCV, Julia, IPOPT
- Camera, IMU, Ultrasounds, LIDAR
- Cloud-Based

Three Forms of Learning 1 - **Skill acquisition**

Three Forms of Learning 2 - Performance Improvement

INITIALIZATION

Borrelli (UC Berkeley)

Iterative Learning MPC

Three Forms of Learning 3 - Computation Load Reduction

Lap Time at each iteration

Average CPU Load at each iteration

Three Forms of Learning

Acquire a Skill

Improve Performance

Reduce Computational Load

How we do this?

Model Predictive Control

A Simple Idea (which exploits the iterative nature of the tasks)

Important Design Steps

Borrelli (UC Berkeley)

Iterative Learning MPC

Iterative Learning Model Predictive Control

Borrelli (UC Berkeley)

Iterative Learning MPC

Iterative Tasks - Problem Setup

- One task execution referred to as "iteration" or "episode"
- Same initial and terminal state at each iteration
 Notation:

 x_t^j = system state at time t of the j-th iteration

 $x_0^j = x_S, \ \forall j \ge 0$

Iterative Tasks - Problem Setup

- One task execution referred to as "iteration" or "episode"
- Same initial and terminal state at each iteration
 Notation:

 x_t^j = system state at time t of the j-th iteration

Iterative Tasks - Problem Setup

- One task execution referred to as "iteration" or "episode"
- Same initial and terminal state at each iteration
 Notation:

 x_t^j = system state at time t of the j-th iteration

Borrelli (UC Berkeley)

Iterative Learning MPC Incorporating data in advanced model based controller

Goal

Safety guarantees:

Constraint satisfaction at iteration j \rightarrow satisfaction at iteration j+1

Performance improvement guarantees:

Closed loop cost at iteration j+1 ≤cost at iteration j

Borrelli (UC Berkeley)

Iterative Learning MPC

Learning MPC

Incorporating data in advance model based controller

Simplification (general case later)

- Known/nominal model
- Infinite Horizon Task
- Uncertainty and model adaptation later (and at this conference)

Borrelli (UC Berkeley)

Iterative Learning MPC
Learning Model Predictive Control (LMPC)

$$J_{t \to t+N}^{\text{LMPC},j}(x_t^j) = \min_{u_{t|t}, \dots, u_{t+N-1|t}} \sum_{k=t}^{t+N-1} h(x_{k|t}, u_{k|t}) + Q^{j-1}(x_{t+N|t})$$

s.t.

$$\begin{aligned} x_{k+1|t} &= f(x_{k|t}, u_{k|t}), \ \forall k \in [t, \cdots, t+N-1] \\ x_{t|t} &= x_t^j, \\ x_{k|t} \in \mathcal{X}, \ u_{k|t} \in \mathcal{U}, \ \forall k \in [t, \cdots, t+N-1] \\ x_{t+N|t} & \mathcal{SS}^{j-1}, \end{aligned}$$
• Recursive feasibility
• Iterative feasibility

Iteration 0

Iteration 0

Use SS⁰ as terminal set at Iteration 1

Borrelli (UC Berkeley)

Iteration 2 Safe Set

Constructing the terminal set

Borrelli (UC Berkeley)

Iterative Learning MPC

2018 CDC- Slide 55

Terminal Set : Convex all of Sample Safe Set

Borrelli (UC Berkeley)

Iterative Learning MPC

Learning Model Predictive Control (LMPC)

$$J_{t \to t+N}^{\text{LMPC},j}(x_t^j) = \min_{u_{t|t},...,u_{t+N-1|t}} \sum_{k=t}^{t+N-1} h(x_{k|t}, u_{k|t}) + Q^{j-1}(x_{t+N|t})$$
s.t.

$$\begin{aligned} x_{k+1|t} &= f(x_{k|t}, u_{k|t}), \ \forall k \in [t, \cdots, t+N-1] \\ x_{t|t} &= x_t^j, \end{aligned}$$

$$x_{k|t} \in \mathcal{X}, \ u_{k|t} \in \mathcal{U}, \ \forall k \in [t, \cdots, t+N-1]$$

 $x_{t+N|t} \in \mathcal{SS}^{j-1},$

- Convergence
- Performance improvement
- Local optimality

Borrelli (UC Berkeley)

Iterative Learning MPC

2018 CDC- Slide 58

A control Lyapunov "function"

Borrelli (UC Berkeley)

Terminal Cost: Barycentric Approximation of Q()

Borrelli (UC Berkeley)

Iterative Learning MPC

2018 CDC- Slide 61

ILMPC Summary

$$J_{t \to t+N}^{\text{LMPC},j}(x_t^j) = \min_{\substack{u_{t|t}, \dots, u_{t+N-1}|_t \\ \lambda^0, \dots, \lambda^{j-1}}} \sum_{k=t}^{t+N-1} h(x_{k|t}, u_{k|t}) + Q^{j-1}(x_{t+N|t})}$$
s.t.

$$x_{k+1|t} = A_{k|t}x_{k|t} + B_{k|t}u_{k|t} + C_{k|t}, \ \forall k \in [t, \dots, t+N-1]$$

$$x_{t|t} = x_t^j,$$

$$x_{k|t} \in \mathcal{X}, \ u_{k|t} \in \mathcal{U}, \ \forall k \in [t, \dots, t+N-1]$$

$$x_{t+N|t} \in \mathcal{CS}^{j-1},$$
MPC strategy: $u_t^j = u_{t|t}^{*,j}(x_t^j)$

- Optimize over inputs and lambdas
- For constrained linear systems
 - Safety guarantees:
 - Constraint satisfaction at iteration j=> satisfaction at iteration j+1
 - Performance improvement guarantees:
 - Closed loop cost at iteration j >= cost at iteration j+1
 - Convergence to global optimal solution
 - Constraint qualification conditions required for cost decrease

Conjecture

$$J_{0 \to \infty}^{j-1}(x_0^{j-1}) \ge J_{0 \to \infty}^j(x_0^j)$$

Notation

$$\mathbf{x}^{j} \;=\; [x_{0}^{j},\; x_{1}^{j},\; ...,\; x_{t}^{j},\; ...] \qquad \mathbf{u}^{j} \;=\; [u_{0}^{j},\; u_{1}^{j},\; ...,\; u_{t}^{j},\; ...]$$

Closed-loop state and input trajectory at iteration *j*

Step 1:
$$J_{0\to\infty}^{j-1}(x_0^{j-1}) \ge J_{0\to N}^{LMPC,j}(x_0^j)$$

$$J_{0\to\infty}^{j-1}(x_0^{j-1}) = \sum_{k=0}^{\infty} h(x_k^{j-1}, u_k^{j-1}) =$$

$$\begin{aligned} \text{Step 1:} \quad J_{0\to\infty}^{j-1}(x_0^{j-1}) &\geq J_{0\to N}^{LMPC,j}(x_0^j) \\ J_{0\to\infty}^{j-1}(x_0^{j-1}) &= \sum_{k=0}^{\infty} h(x_k^{j-1}, u_k^{j-1}) = \sum_{k=0}^{N-1} h(x_k^{j-1}, u_k^{j-1}) + \sum_{k=N}^{\infty} h(x_k^{j-1}, u_k^{j-1}) \end{aligned}$$

Step 1:
$$J_{0\to\infty}^{j-1}(x_0^{j-1}) \ge J_{0\to N}^{LMPC,j}(x_0^j)$$

 $J_{0\to\infty}^{j-1}(x_0^{j-1}) = \sum_{k=0}^{\infty} h(x_k^{j-1}, u_k^{j-1}) = \sum_{k=0}^{N-1} h(x_k^{j-1}, u_k^{j-1}) + \sum_{k=N}^{\infty} h(x_k^{j-1}, u_k^{j-1})$
 $Q^{j-1}(x_N^{j-1})$

$$\begin{aligned} \text{Step 1:} \quad J_{0\to\infty}^{j-1}(x_0^{j-1}) &\geq J_{0\to N}^{LMPC,j}(x_0^j) \\ J_{0\to\infty}^{j-1}(x_0^{j-1}) &= \sum_{k=0}^{\infty} h(x_k^{j-1}, u_k^{j-1}) = \sum_{k=0}^{N-1} h(x_k^{j-1}, u_k^{j-1}) + \sum_{k=N}^{\infty} h(x_k^{j-1}, u_k^{j-1}) \\ & \overbrace{Q^{j-1}(x_N^{j-1})}^{N-1} \\ & \downarrow \\ J_{0\to\infty}^{j-1}(x_0^{j-1}) &= \sum_{k=0}^{N-1} h(x_k^{j-1}, u_k^{j-1}) + Q^{j-1}(x_N^{j-1}) \geq J_{0\to N}^{LMPC,j}(x_0^j) \end{aligned}$$

Step 1:
$$J_{0\to\infty}^{j-1}(x_0^{j-1}) \ge J_{0\to N}^{LMPC,j}(x_0^j)$$

Step 2:
$$J_{0 \to N}^{LMPC,j}(x_0^j) \ge J_{0 \to \infty}^j(x_0^j)$$

$$J_{1 \to 1+N}^{LMPC,j}(x_1^j) - J_{0 \to N}^{LMPC,j}(x_0^j) \le -h(x_0^j, u_0^j)$$

Step 1:
$$J_{0\to\infty}^{j-1}(x_0^{j-1}) \ge J_{0\to N}^{LMPC,j}(x_0^j)$$

Step 2:
$$J_{0 \to N}^{LMPC,j}(x_0^j) \ge J_{0 \to \infty}^j(x_0^j)$$

$$J_{1 \to 1+N}^{LMPC,j}(x_1^j) - J_{0 \to N}^{LMPC,j}(x_0^j) \le -h(x_0^j, u_0^j)$$

 $\rightarrow J_{0 \to N}^{LMPC,j}(x_0^j) \ge J_{1 \to 1+N}^{LMPC,j}(x_1^j) + h(x_0^j, u_0^j) \ge J_{2 \to 2+N}^{LMPC,j}(x_2^j) + h(x_0^j, u_0^j) + h(x_1^j, u_1^j)$

Step 1:
$$J_{0\to\infty}^{j-1}(x_0^{j-1}) \ge J_{0\to N}^{LMPC,j}(x_0^j)$$

Step 2:
$$J_{0 \to N}^{LMPC,j}(x_0^j) \ge J_{0 \to \infty}^j(x_0^j)$$

$$J_{1 \to 1+N}^{LMPC,j}(x_1^j) - J_{0 \to N}^{LMPC,j}(x_0^j) \le -h(x_0^j, u_0^j)$$

 $\rightarrow J_{0 \to N}^{LMPC,j}(x_0^j) \ge J_{1 \to 1+N}^{LMPC,j}(x_1^j) + h(x_0^j, u_0^j) \ge J_{2 \to 2+N}^{LMPC,j}(x_2^j) + h(x_0^j, u_0^j) + h(x_1^j, u_1^j)$

$$\rightarrow J_{0 \rightarrow N}^{LMPC,j}(x_0^j) \ge \lim_{t \rightarrow \infty} J_{t \rightarrow t+N}^{LMPC,j}(x_t^j) + \sum_{k=0}^{\infty} h(x_k^j, u_k^j)$$

Conclusion: $J_{0\to\infty}^{j-1}(x_0^{j-1}) \ge J_{0\to N}^{LMPC,j}(x_0^j) \ge J_{0\to\infty}^j(x_0^j)$

The iteration cost $J_{0\to\infty}^{j}$ is non-increasing at each iteration

Borrelli (UC Berkeley)

Iterative Learning MPC

2018 CDC- Slide 71

Iterative Learning MPC

- Optimize over inputs and lambdas
- Simple proofs
- For constrained linear systems
 - Safety and Performance improvement guarantees
 - Convergence to global optimal solution (for linear
 - Constraint qualification conditions required for cost decrease

$$x_{N} = A^{N}x_{0} + [A^{N-1}B\dots B] \begin{bmatrix} u_{0} \\ \vdots \\ u_{N-1} \end{bmatrix}$$

If full column rank, improvement cannot be obtained

Constrained LQR Example

Iterative LMPC with horizon N=2

$$\begin{split} \min_{\substack{u_{0|t}, u_{1|t} \\ u_{0|t}, u_{1|t}}} & \sum_{k=0}^{2} \left[||x_{k|t}||_{2}^{2} + ||u_{k|t}|_{2}^{2} \right] + Q^{j-1}(x_{2|t}) \\ \text{Solution} \\ \text{S.t.} & x_{k+1|t} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} x_{k|t} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u_{k|t}, \ \forall k = [0, 1] \\ x_{k|t} \in \text{box}[-4, 4] \ \forall k = [0, 1] \\ u_{k|t} \in [-1, 1] \quad \forall k = [0, 1] \\ u_{k|t} \in [-1, 1] \quad \forall k = [0, 1] \\ \text{Terminal Constraint} & x_{2|t} \in \mathcal{CS}^{j-1} \\ \text{Initial Condition} & x_{0|t} = x(t), \end{split}$$

Will not work!

Will work if one sets N=3

Borrelli (UC Berkeley)

Iterative Learning MPC

Comparison with R.L.??

- RL term too broad
- Two good references:
 - Bertsekas paper connecting MPC and ADP*
 - Lewis and Vrabile survey on CSM**
 - Recht survey (section 6): <u>https://arxiv.org/abs/1806.09460</u>
- ILMPC highlights
 - Continuous state formulation
 - Constraints satisfaction and Sampled Safe Sets
 - Q-function constructed (learned) locally based on cost/model driven exploration and past trails
 - Q-function at stored state is "exact" and lowerbounds property at intermediate points (for convex problems)

*Dynamic Programming and Suboptimal Control: A Survey from ADP to MPC

**Reinforcement Learning and Adaptive Dynamic Programming for Feedback Control

About Model Learning in Racing

Borrelli (UC Berkeley)

Iterative Learning MPC

2018 CDC- Slide 76

Autonomous Racing Control Problem

$$\begin{array}{c} \min_{T,\mathbf{u}} & T \quad \text{Control objective} \\ x_0 = x_s, \; x_T = \mathcal{X}_F \quad \text{Start & end position} \\ \end{array}$$

$$\begin{array}{c} \text{System dynamics} \\ \text{System constraints} \end{array} \quad x_{k+1} = f(x_k, u_k), \quad \forall k \in \{0, \dots, T-1\} \\ \text{Obstacle avoidance} \quad x_k \in \mathcal{X}, \; u_k \in \mathcal{U}, \quad \forall k \in \{0, \dots, T-1\} \end{array}$$

Borrelli (UC Berkeley)

Learning Model Predictive Control (LMPC)

$$\min_{\substack{u_{t|t}, \dots, u_{t+N-1|t} \\ u_{t|t}, \dots, u_{t+N-1|t} }} \sum_{k=t}^{t+N-1} \left(\mathbbm{1}_{x_{k|t} \in \mathcal{X}_F} \right) + Q^{j-1}(x_{t+N|t})$$
s.t.
$$x_{k+1|t} = A_{k|t} x_{k|t} + B_{k|t} u_{k|t} + C_{k|t}, \ \forall k \in [t, \dots, t+N-1]$$

$$x_{t|t} = x_t^j,$$

$$x_{k|t} \in \mathcal{X}, \ u_{t+t} \in \mathcal{U}, \ \forall k \in [t, \dots, t+N-1]$$

$$x_{t+N|t} \in \mathcal{CS}^{j-1},$$

Receding Horizon Strategy:

$$u_t^j = u_0^*(x_t^j)$$

Borrelli (UC Berkeley)
Learning Process

The lap time decreases until the LMPC converges to a set of trajectories

Borrelli (UC Berkeley)

Iterative Learning MPC

Learning Model Predictive Control (LMPC)

$$\min_{\substack{u_{t|t}, \dots, u_{t+N-1|t} \\ x_{k|t} \in \mathcal{X}_F \\ x_{k+1|t} = A_{k|t} x_{k|t} + B_{k|t} u_{k|t} + C_{k|t}, \forall k \in [t, \dots, t+N-1] \\ x_{t|t} = x_t^j, \\ x_{k|t} \in \mathcal{X}, \ u_{k|t} \in \mathcal{U}, \ \forall k \in [t, \dots, t+N-1] \\ x_{t+N|t} \in \mathcal{CS}^{j-1}, \end{cases}$$

Receding Horizon Strategy:

$$u_t^j = u_0^*(x_t^j)$$

Borrelli (UC Berkeley)

• Nonlinear Dynamical System

$$\begin{aligned} \ddot{x} &= \dot{y}\dot{\psi} + \frac{1}{m}\sum_{i}F_{x_{i}} \\ \ddot{y} &= -\dot{x}\dot{\psi} + \frac{1}{m}\sum_{i}F_{y_{i}} \\ \ddot{\psi} &= \frac{1}{I_{z}}(a(F_{y_{1,2}}) - b(F_{y_{2,3}}) + c(-F_{x_{1,3}} + F_{x_{2,4}}) \\ \dot{X} &= \dot{x}\cos\psi - \dot{y}\sin\psi, \quad \dot{Y} = \dot{x}\sin\psi + \dot{y}\cos\psi \end{aligned}$$

• Nonlinear Dynamical System

$$\begin{aligned} \ddot{x} &= \dot{y}\dot{\psi} + \frac{1}{m}\sum_{i}F_{x_{i}} \\ \ddot{y} &= -\dot{x}\dot{\psi} + \frac{1}{m}\sum_{i}F_{y_{i}} \\ \ddot{\psi} &= \frac{1}{I_{z}}(a(F_{y_{1,2}}) - b(F_{y_{2,3}}) + c(-F_{x_{1,3}} + F_{x_{2,4}}) \\ \dot{X} &= \dot{x}\cos\psi - \dot{y}\sin\psi, \quad \dot{Y} = \dot{x}\sin\psi + \dot{y}\cos\psi \end{aligned}$$

Kinematic Equations

• Nonlinear Dynamical System

$$\begin{aligned} \ddot{x} &= \dot{y}\psi + \frac{1}{m}\sum_{i}F_{x_{i}}\\ \ddot{y} &= -\dot{x}\dot{\psi} + \frac{1}{m}\sum_{i}F_{y_{i}}\\ \ddot{\psi} &= \frac{1}{I_{z}}(a(F_{y_{1,2}}) - b(F_{y_{2,3}}) + c(-F_{x_{1,3}} + F_{x_{2,4}})\\ \dot{X} &= \dot{x}\cos\psi - \dot{y}\sin\psi, \quad \dot{Y} = \dot{x}\sin\psi + \dot{y}\cos\psi \end{aligned}$$

Kinematic Equations

• Identifying the Dynamical System

$$z_{k+1|t} = \begin{bmatrix} \dot{x}_{k+1|t} \\ \dot{y}_{k+1|t} \\ \dot{\psi} \\ \psi_{k+1|t} \\ X_{k+1|t} \\ Y_{k+1|t} \end{bmatrix} = \begin{bmatrix} \text{Linearized Kinematics} \\ \text{Linearized Kinematics} \\ \text{Linearized Kinematics} \\ \text{Linearized Kinematics} \end{bmatrix} z_{k|t} + \begin{bmatrix} u_{k|t} \\ 1 \end{bmatrix} \\ \text{Linearized Kinematics} \\ \text{Linearized Kinematics} \\ \text{Linearized Kinematics} \end{bmatrix} \begin{bmatrix} u_{k|t} \\ 1 \end{bmatrix}$$

• Nonlinear Dynamical System

$$\begin{array}{ll} \ddot{x} &= \dot{y}\dot{\psi} + \frac{1}{m}\sum_{i}F_{x_{i}} \\ \ddot{y} &= -\dot{x}\dot{\psi} + \frac{1}{m}\sum_{i}F_{y_{i}} \\ \ddot{\psi} &= \frac{1}{I_{z}}(a(F_{y_{1,2}}) - b(F_{y_{2,3}}) + c(-F_{x_{1,3}} + F_{x_{2,4}}) \\ \dot{X} &= \dot{x}\cos\psi - \dot{y}\sin\psi, \quad \dot{Y} = \dot{x}\sin\psi + \dot{y}\cos\psi \end{array}$$

Dynamic Equations

Kinematic Equations

• Identifying the Dynamical System

Local Linear Regression

$$z_{k+1|t} = \begin{bmatrix} \dot{x}_{k+1|t} \\ \dot{y}_{k+1|t} \\ \ddot{\psi} \\ \psi_{k+1|t} \\ X_{k+1|t} \\ Y_{k+1|t} \end{bmatrix} = \begin{bmatrix} \arg\min\sum_{i} K(z_{k|t} - z_{i}) ||\Lambda_{y} \begin{bmatrix} z_{k|t} \\ u_{k|t} \\ 1 \end{bmatrix} - y_{i+1} ||, \forall y \in \{\dot{x}, \dot{y}, \ddot{\psi}\} \\ \text{Linearized Kinematics} \\ \text{Linearized Ki$$

Linearization around predicted trajectory

• Identifying the Dynamical System

Local Linear Regression

$$z_{k+1|t} = \begin{bmatrix} \dot{x}_{k+1|t} \\ \dot{y}_{k+1|t} \\ \ddot{\psi} \\ \psi_{k+1|t} \\ X_{k+1|t} \\ Y_{k+1|t} \end{bmatrix} = \begin{bmatrix} \arg\min\sum_{i} K(z_{k|t} - z_{i}) ||\Lambda_{y} \begin{bmatrix} z_{k|t} \\ u_{k|t} \\ 1 \end{bmatrix} - y_{i+1} ||, \forall y \in \{\dot{x}, \dot{y}, \ddot{\psi}\} \\ \text{Linearized Kinematics} \end{bmatrix} \begin{bmatrix} u_{k|t} \\ 1 \end{bmatrix}$$

Linearization around predicted trajectory

• Important Design Steps

- 1. Compute trajectory to linearize around uses previous optimal inputs and inputs in the safe set
- 2. Enforce model-based **sparsity** in local linear regression

• Nonlinear Dynamical System

1

The velocity update is not affected by **Position** and **Acceleration** command

$$\Lambda_{\dot{x}} = \begin{bmatrix} \lambda_1 & \lambda_2 & \lambda_3 \end{bmatrix} \begin{bmatrix} \lambda_1 & \lambda_2 & \lambda_3 \end{bmatrix} \begin{bmatrix} \lambda_1 & \lambda_2 & \lambda_3 \end{bmatrix} \begin{bmatrix} \lambda_1 & \lambda_2 & \lambda_3 \end{bmatrix}$$

 \square

• Identifying the Dynamical System

Local Linear Regression

$$z_{k+1|t} = \begin{bmatrix} \dot{x}_{k+1|t} \\ \dot{y}_{k+1|t} \\ \ddot{\psi} \\ \psi_{k+1|t} \\ X_{k+1|t} \\ Y_{k+1|t} \end{bmatrix} = \begin{bmatrix} \arg\min\sum_{i} K(z_{k|t} - z_{i}) ||\Lambda_{y} \begin{bmatrix} z_{k|t} \\ u_{k|t} \\ 1 \end{bmatrix} - y_{i+1} ||, \forall y \in \{\dot{x}, \dot{y}, \ddot{\psi}\} \\ \text{Linearized Kinematics} \end{bmatrix} \begin{bmatrix} u_{k|t} \\ 1 \end{bmatrix}$$

Linearization around predicted trajectory

• Important Design Steps

- 1. Compute **trajectory to linearize around**pusing previous optimal inputs and inputs in the safe set
- 2. Enforce model-based **sparsity** in local linear regression
- 3. Use data close to current state trajectory for parameter ID
- 4. Use **kernel** K() to weight differently data as a function of distance to linearized trajectory

Accelerations

Borrelli (UC Berkeley)

Results

• Gain from steering to lateral velocity

Borrelli (UC Berkeley)

About Model Learning Ball in Cup

Borrelli (UC Berkeley)

Iterative Learning MPC

2018 CDC- Slide 95

Ball in a Cup System with MuJoCo

Borrelli (UC Berkeley)

Ball in a Cup Control Problem

Learning Model Predictive Control (LMPC)

$$\min_{\substack{u_{t|t}, \dots, u_{t+N-1|t} \\ u_{t|t}, \dots, u_{t+N-1|t} }} \sum_{k=t}^{t+N-1} \left(\mathbbm{1}_{x_{k|t} \in \mathcal{X}_F} + y_{k|t}^2 \right) + Q^{j-1}(x_{t+N|t})$$
s.t.
$$x_{k+1|t} = A_{k|t} x_{k|t} + B_{k|t} u_{k|t} + C_{k|t}, \ \forall k \in [t, \dots, t+N-1]$$

$$x_{t|t} = x_t^j,$$

$$x_{k|t} \in \mathcal{X}, \ u_{k|t} \in \mathcal{U}, \ \forall k \in [t, \dots, t+N-1]$$

$$x_{t+N|t} \in \mathcal{CS}^{j-1},$$

Receding Horizon Strategy:

$$u_t^j = u_0^*(x_t^j)$$

Borrelli (UC Berkeley)

Useful Mujoco Model Abstraction

• Identifying the Dynamical System

Local Linear Regression

• Important Design Steps

- 1. Compute trajectory to linearize aroundpusing previous optimal inputs and inputs in the safe set
- 2. Enforce model-based **sparsity** in local linear regression
- 3. Use data close to current state trajectory for parameter ID
- 4. Use **kernel** K() to weight differently data as a function of distance to linearized trajectory

Ball in a Cup System

- At iteration 0 find a sequence by sampling parametrized inputs profiles (takes 5mins)
- Use ILMPC: At iteration 1, time reduced of 10%, cup height movement reduced of 35%

Back to our main chart..

Borrelli (UC Berkeley)

Iterative Learning MPC

2018 CDC- Slide 101

Three Forms of Learning

Performance improvement

Skill acquisition

How we do this?

Model Predictive Control + A Simple Idea + Good Practices

Borrelli (UC Berkeley)

Iterative Learning MPC

Offline $\pi(\cdot)$ and Online $\pi(x)$ Computation

One Simple Way: Data-Based Policy for $\pi(\cdot)$

At time t, given the state x(t) solve the following LP

$$\begin{split} [\lambda_0^{0,*}, \dots, \lambda_i^{j,*}] &= \arg\min_{\lambda_i^j \in [0,1]} \sum_i \sum_j Q_i^j \lambda_i^j \\ \text{s.t} \ \sum_i \sum_j x_i^j \lambda_i^j &= x(t), \\ \sum_i \sum_j \lambda_i^j &= 1 \end{split}$$

Given the optimizer compute the input at time t

$$\pi(x(t)) = \sum_{i} \sum_{j} u_{i}^{j} \lambda_{i}^{j,*}$$

One Simple Way: Data-Based Policy for $\pi(\cdot)$

At time t, given the state x(t) solve the following LP

$$[\lambda_{0}^{0,*}, \dots, \lambda_{i}^{j,*}] = \arg \min_{\substack{\lambda_{i}^{j} \in [0,1] \\ i}} \sum_{j} \sum_{j} Q_{i}^{j} \lambda_{i}^{j}} \\ \text{s.t} \sum_{i} \sum_{j} \sum_{j} \chi_{i}^{j} \lambda_{i}^{j} = x(t), \\ \sum_{i} \sum_{j} \sum_{j} \lambda_{i}^{j} = 1 \\ \text{Historical data} \\ \text{optimizer compute the input of converged iterations} \\ \pi(x(t)) = \sum_{i} \sum_{j} (u_{i}^{j}) \lambda_{i}^{j,*} \\ \end{cases}$$

Given the

Three Forms of Learning 3 - Computation Load Reduction

Lap Time at each iteration

Average CPU Load at each iteration

Experimental Results

Borrelli (UC Berkeley)

Data Based Policy: Alternatives

- Nearest Neighbor
- Train ReLU Neural Network
- Local Explicit MPC

All Continuous Piecewise Affine Policies

Learning MPC Incorporating data in advance model based controller

$$J_{t \to t+N}^{\text{LMPC},j}(x_t^j) = \min_{u_{t+N}} \sum_{u_{t+N}} \sum_{u_{k+N}} h(x_{k|t}, u_{k|t}) + Q^{j-1}(x_{t+N|t})$$

What about noise and model uncertainty?

In Practice

Noise and model uncertainty: Robust case

Borrelli (UC Berkeley)

Iterative Learning MPC

ILMPC – Robust and Adaptive design

Borrelli (UC Berkeley)

Iterative Learning MPC

2018 CDC- Slide 111

At Iteration 0

At Iteration 1

Borrelli (UC Berkeley)

Iterative Learning MPC

2018 CDC- Slide 113

ILMPC – Robust and Adaptive design

- Robust invariants
- "Robustify" Q-function (and dualize for computational efficiency)
- Chance constraints

See my group papers at this conference if interested..

For Iterative tasks I discussed

How to obtain performance improvement and reduced computational load while satisfying constraints

By using Iterative learning MPC, i.e.

- Model Predictive Control
- A Simple Idea
 - (which exploits the iterative nature of the tasks)
- A Few Important Design Steps

The End