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Random Convex Programs (RCP) Preliminaries

RCP theory
Introduction

Random convex programs (RCPs) are convex optimization problems subject
to a finite number of constraints (scenarios) that are extracted according to
some probability distribution.

The optimal objective value of an RCP and its associated optimal solution
(when it exists), are random variables.

RCP theory is mainly concerned with providing probabilistic assessments on
the objective and on the probability of constraint violation for RCPs.

We give a synthetic overview of RCP theory.

Discuss impact and some applicative examples, with focus on control
applications.
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Random Convex Programs (RCP) Preliminaries

RCP theory
Preliminaries

A finite-dimensional convex optimization problem

P[K ] : minx∈X c>x subject to: (1)

fj(x) ≤ 0, ∀j ∈ K ,

x ∈ X is the optimization variable, X ⊂ Rd is a compact and convex
domain, c 6= 0 is the objective direction, K is a finite set of indices, and
fj(x) : Rd → R are convex in x for each j ∈ K .

Each constraint thus defines a convex set {x : fj(x) ≤ 0}.
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Random Convex Programs (RCP) Preliminaries

A model paradigm
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Random Convex Programs (RCP) Preliminaries

Example model

The variable is x = (c , r), where c ∈ R2 is the center and r ∈ R is the
radius of the circle (i.e., our “model”).

The (convex) problem we solve is:

min
(c,r)

r

s.t.: ‖c − δ(i)‖2 ≤ r , i = 1, . . . ,N,

where δ(1), . . . , δ(N) ∈ R2 are the N random points, coming from an
unknown distribution.

Let c∗ and r∗ be the optimal solutions obtained in an instance of the above
problem...

What is the probability that a new, unseen, random point, say δ, is
“explained” by our model. That is, can we say something a-priori about

P{‖c∗ − δ‖2 ≤ r∗}?
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Random Convex Programs (RCP) Preliminaries

RCP theory
Formalization

Let δ ∈ ∆ denote a vector of random parameters, with ∆ ⊆ R`, and let P
be a probability measure on ∆.

Let x ∈ Rd be a design variable, and consider a family of functions
f (x , δ) : (Rd ×∆)→ R defining the design constraints and parameterized
by δ.

Specifically, for a given design vector x and realization δ of the uncertainty,
the design constraint are satisfied if f (x , δ) ≤ 0.

Assumption (convexity)

The function f (x , δ) : (Rd ×∆)→ R is convex in x , for each fixed δ ∈ ∆.
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Random Convex Programs (RCP) Preliminaries

RCP theory
Formalization

Define
ω
.

= (δ(1), . . . , δ(N)) ∈ ∆N ,

where δ(i) ∈ ∆, i = 1, . . . ,N, are independent random variables, identically
distributed (iid) according to P, and where ∆N = ∆×∆ · · ·∆ (N times).

Let PN denote the product probability measure on ∆N .

To each δ(j) we associate a constraint function

fj(x)
.

= f (x , δ(j)), j = 1, . . . ,N.

Therefore, to each randomly extracted ω there correspond N random
constraints fj(x), j = 1, . . . ,N.
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Random Convex Programs (RCP) Preliminaries

RCP theory
Formalization

Given ω = (δ(1), . . . , δ(N)) ∈ ∆N we define the following convex optimization
problem:

P[ω] : minx∈X c>x subject to: (2)

fj(x) ≤ 0, j = 1, . . . ,N,

where fj(x) = f (x , δ(j)).

For each random extraction of ω, problem (2) has the structure of a generic
convex optimization problem P[ω], as defined in (1).

We denote with J∗ = J∗(ω) the optimal objective value of P[ω], and with
x∗ = x∗(ω) the optimal solution of problem (2), when it exists.

Problem (2) is named a random convex program (RCP), and the
corresponding optimal solution x∗ is named a scenario solution.
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Random Convex Programs (RCP) Preliminaries

RCP theory
Remarks on the generality of the model

Model (2) encloses a quite general family of uncertain convex programs.

Problems with multiple uncertain (convex) constraints of the form

minx∈X c>x subject to:

f (1)(x , δ(j)) ≤ 0, . . . , f (m)(x , δ(j)) ≤ 0;

j = 1, . . . ,N,

can be readily cast in the form of (2) by condensing the multiple constraints
in a single one:

f (x , δ)
.

= max
i=1,...,m

f (i)(x , δ).

The case when the problem has an uncertain and nonlinear (but convex)
objective function g(x , δ) can also be fit in the model by adding one slack
decision variable t and reformulating the problem with linear objective t and
an additional constraint g(x , δ)− t ≤ 0.
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Random Convex Programs (RCP) Probabilistic properties of scenario solutions

Violation probability

Definition (Violation probability)

The violation probability of problem P[ω] is defined as

V ∗(ω)
.

= P{δ ∈ ∆ : J∗(ω, δ) > J∗(ω)}.

To each random extraction of ω ∈ ∆N it corresponds a value of V ∗, which is
therefore itself a random variable with values in [0, 1].

For given ε ∈ (0, 1), let us define the “bad” event of having a violation
larger than ε:

B .
= {ω ∈ ∆N : V ∗ > ε}

We prove that it holds that PN{B} ≤ β(ε), for some explicitly given
function β(ε) that goes to zero as N grows.

In other words, if N is large enough, the scenario objective is a-priori
guaranteed with probability at least 1− β(ε) to have violation probability
smaller than ε.
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Random Convex Programs (RCP) Probabilistic properties of scenario solutions

RCP theory
Technical hypotheses

When problem P[ω] admits an optimal solution, this solution is unique.

Problem P[ω] is “nondegenerate” with probability one. This essentially
requires that the constraints are in “general position.”

...both these technical conditions can be lifted.
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Random Convex Programs (RCP) Probabilistic properties of scenario solutions

RCP theory
Main result

Theorem

Consider problem (2), with N ≥ d + 1. Let the above Hp. hold, and

V ∗(ω)
.

= P{δ ∈ ∆ : J∗(ω, δ) > J∗(ω)}.

Then,
PN{ω ∈ ∆N : V ∗(ω) > ε} ≤ Φ(ε; d ,N)

where

Φ(ε; d ,N)
.

=
d∑

j=0

(
N

j

)
εj(1− ε)N−j
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The proof of this result is far from obvious...
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Random Convex Programs (RCP) Probabilistic properties of scenario solutions

Remark
Beta distribution

Considering the complementary event V ∗(ω) ≤ ε, we have a upper bound
on the cumulative distribution function of V ∗(ω):

PN{V ∗(ω) ≤ ε} ≥ 1− Φ(ε; d ,N)

Φ(ε; d ,N) is the cumulative distribution of a beta random variable:

Φ(ε; d ,N) =

∫ ε

0

beta(x ; d + 1,N − d)dx ,

where

beta(x ; d + 1,N − d) =
1

B(d + 1,N − d)
xd(1− x)N−d−1.
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Random Convex Programs (RCP) Probabilistic properties of scenario solutions

Remark

PN{ω ∈ ∆N : V ∗(ω) > ε} ≤ Φ(ε; d ,N)

Φ(ε; d ,N)
.

=
d∑

j=0

(
N

j

)
εj(1− ε)N−j

This bound is UNIVERSAL:

Does not depend on problem type (LP, QP, SDP, generic convex);

Does not depend on the distribution law P of the uncertain parameters;

Depends on the problem structure only via the dimension, d ;

Provides an explicit assessment on the violation probability tail, for finite N.

Learning-theoretic flavor: “training” on a finite batch of samples N provides a
solution which is still optimal, with high probability, on a new, unseen, scenario...

G. Calafiore (Politecnico di Torino) Learning for Control Workshop 15 / 42



Random Convex Programs (RCP) Probabilistic properties of scenario solutions

Remark

PN{ω ∈ ∆N : V ∗(ω) > ε} ≤ Φ(ε; d ,N)

Φ(ε; d ,N)
.

=
d∑

j=0

(
N

j

)
εj(1− ε)N−j

This bound is UNIVERSAL:

Does not depend on problem type (LP, QP, SDP, generic convex);

Does not depend on the distribution law P of the uncertain parameters;

Depends on the problem structure only via the dimension, d ;

Provides an explicit assessment on the violation probability tail, for finite N.

Learning-theoretic flavor: “training” on a finite batch of samples N provides a
solution which is still optimal, with high probability, on a new, unseen, scenario...

G. Calafiore (Politecnico di Torino) Learning for Control Workshop 15 / 42



Random Convex Programs (RCP) Probabilistic properties of scenario solutions

Reversing the bound

Corollary

Given ε ∈ (0, 1), β ∈ (0, 1). If N is an integer such that

N ≥ 2

ε

(
lnβ−1 + d

)
.

then it holds that
PN{V ∗ > ε} ≤ β.

Observe that β−1 is under a log: achieving small β is “cheap” in terms of the
required number of samples N.
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Random Convex Programs (RCP) Probabilistic properties of scenario solutions

A Practitioner’s viewpoint

Set β to a very small level, say β = 10−10

Bound becomes

N ≥ 2

ε
(21 + d) .

The event {V ∗ > ε} has vanishing probability ≤ 10−10, that is, the
complementary event {V ∗ ≤ ε} holds with practical certainty.

Scenario optimization guarantees, with practical certainty, that

V ∗ ≤ ε.

These statements are more easily understandable by engineers. The
neglected event is so remote that before worrying about it the designer
should better check many other simplifying assumptions and uncertainties
on her model...

Ok... so why all this may be interesting in control applications?
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Random Convex Programs (RCP) Applications in control

Example
Robust Model Predictive Control

A discrete-time LTI system

x(k + 1) = Ax(k) + Bu(k), x(0) = x0

y(k) = Cx(k)

Determine a sequence of control actions u(0), u(1), . . . , u(T − 1), such that a
suitable performance index is minimized over a finite horizon T , while satisfying a
given set of constraints on the input and output signals:

min γ
s.t.: J(u(0), u(1), . . . , u(T − 1)) ≤ γ

ymin ≤ y(k) ≤ ymax, k = 1, . . . ,T
umin ≤ u(k) ≤ umax, k = 0, . . . ,T − 1,

where

J(u(0), u(1), . . . , u(T − 1)) =
∑T−1

k=0

(
x>(k)Qx(k) + u>(k)Ru(k)

)
+ x>(T )Px(T ),

with Q,R,P given positive definite matrices.
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Random Convex Programs (RCP) Applications in control

Example
Robust Model Predictive Control

We consider an important variation on the problem, where the system
matrices A(δ),B(δ),C (δ) are nonlinear functions of an uncertainty vector of
random parameters δ ∈ ∆. The constraints in the problem need then be
enforced in some “robust” sense.

In a probabilistic approach, we ask that the command and output
constraints are met with high probability, that is for most (if not all) possible
realization of δ.

Let θ
.

= [u>(0) u>(1) · · · u>(T − 1)]>, we rewrite the constraints as

f (θ, δ)
.

= max {J − γ,maxk=1,...,T{y(k)− ymax, ymin − y(k)},
maxk=0,...,T−1{u(k)− ymax, umin − u(k)}} .
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Random Convex Programs (RCP) Applications in control

Example
Robust Model Predictive Control

Define the probability of violation for the constraints at θ as

V (θ) = P{δ ∈ ∆ : f (θ, δ) > 0}.

Then, fixing a probability level ε ∈ (0, 1), we say that the control sequence θ
is a probabilistically feasible control to level ε, if it satisfies V (θ) ≤ ε.

The RCP technology can then be used effectively to determine such a
probabilistically robust control law.
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Repetitive Scenario Design (RSD) Iterating scenario design and feasibility checks

Repetitive scenario design (RSD)
Introduction

Repetitive scenario design (RSD)
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Repetitive Scenario Design (RSD) Iterating scenario design and feasibility checks

Repetitive scenario design (RSD)

Repetitive Scenario Design (RSD) is a randomized approach to robust
design based on iterating two phases:

a standard scenario design phase that uses N scenarios (design
samples), followed by
a randomized feasibility test phase that uses No test samples on the
scenario solution.

The above two steps are repeated until the desired level of probabilistic
feasibility is eventually obtained.

In the following, we assume that the scenario problem is feasible w.p. one
and it attains a unique optimal solution θ∗.
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Repetitive Scenario Design (RSD) Iterating scenario design and feasibility checks

Repetitive scenario design (RSD)

This novel approach broadens the applicability of the scenario technology,
since the user is now presented with a clear tradeoff between the number N
of design samples and the ensuing expected number of repetitions required
by the RSD algorithm.

The plain (one-shot) scenario design becomes just one of the possibilities,
sitting at one extreme of the tradeoff curve, in which one insists in finding a
solution in a single repetition: this comes at the cost of possibly high N.

Other possibilities along the tradeoff curve use lower N values, but possibly
require more than one repetition.
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Repetitive Scenario Design (RSD) Iterating scenario design and feasibility checks

Repetitive scenario design (RSD)
Idea

Each time we solve a scenario problem with N scenarios, we “toss a coin.”
The toss is successful if V (θ∗) ≤ ε, while it fails if V (θ∗) > ε.

The a-priori probability of success in a coin toss is ≥ 1− βε(N), where

βε(N) = Φ(ε; d ,N)
.

=
d∑

j=0

(
N

j

)
εj(1− ε)N−j

Plain scenario technology works by selecting N such that βε(N) is very small
(say, ≤ 10−9).

This means biasing the coin so to be successful with practical certainty (i.e.,
w.p. ≥ 1− 10−9) in one single coin toss!

Success in one toss comes at the price of possibly high N...
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Repetitive Scenario Design (RSD) Iterating scenario design and feasibility checks

Repetitive scenario design (RSD)
Idea

What if we use a lower N (i.e., we bias the coin with higher βε(N)) and then
check the resulting solution?

Idea: while the probability of being successful in one shot is low, if we toss
the coin repeatedly, the probability of being successful at some toss becomes
arbitrarily high...

We thus set up an iterative approach in two stages: a scenario optimization
stage, and a feasibility check phase.

‘

( )

( )
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Repetitive Scenario Design (RSD) Iterating scenario design and feasibility checks

Repetitive scenario design (RSD)
Ideal oracle

We first assume we have an ideal feasibility oracle, called a Deterministic
Violation Oracle (DVO), that returns true if V (θ∗) ≤ ε and false

otherwise.

We apply the following algorithm:

Algorithm (RSD with ε-DVO)
Input data: integer N ≥ n, level ε ∈ [0, 1].
Output data: solution θ∗. Initialization: set iteration counter to k = 1.

1 (Scenario step) Generate N i.i.d. samples ω(k) .
= {q(1)

k , . . . , q
(N)
k } according

to P, and solve scenario problem. Let θ∗k be the resulting optimal solution.

2 (ε-DVO step) If V (θ∗k ) ≤ ε, then set flag to true, else set it to false.

3 (Exit condition) If flag is true, then exit and return current solution
θ∗ ← θ∗k ; else set k ← k + 1 and goto 1.
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Repetitive Scenario Design (RSD) Iterating scenario design and feasibility checks

Repetitive scenario design (RSD)
Ideal oracle

Theorem

Given ε ∈ [0, 1] and N ≥ n, define the running time K of the algorithm with DVO
as the value of the iteration counter k when the algorithm exits. Then:

1 The solution θ∗ returned by the algorithm is an ε-probabilistic robust design,
i.e., V (θ∗) ≤ ε.

2 The expected running time of the algorithm is ≤ (1− βε(N))−1.

3 The running time of the algorithm is ≤ k with probability ≥ 1− βε(N)k .
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Repetitive Scenario Design (RSD) Iterating scenario design and feasibility checks

Repetitive scenario design (RSD)
Randomized oracle

Since the ideal oracle is hardly realizable in practice, we next introduce a
Randomized Violation Oracle (RVO):

ε′-RVO (Randomized ε′-violation oracle)
Input data: integer No , level ε′ ∈ [0, 1], and θ ∈ Rn. Output data: a logic flag,
true or false.

1 Generate No i.i.d. samples ωo
.

= {q(1), . . . , q(No)}, according to P.

2 For i = 1, . . . ,No , let vi = 1 if f (θ, q(i)) > 0 and vi = 0 otherwise.

3 If
∑

i vi ≤ ε′No , return true, else return false.
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Repetitive Scenario Design (RSD) Iterating scenario design and feasibility checks

Repetitive scenario design (RSD)
Randomized oracle

Algorithm (RSD with ε′-RVO)
Input data: integers N, No , level ε′ ∈ [0, 1]. Output data: solution θ∗.
Initialization: set iteration counter to k = 1.

1 (Scenario step) Generate N i.i.d. samples ω(k) .
= {q(1)

k , . . . , q
(N)
k } according

to P, and solve scenario problem. Let θ∗k be the resulting optimal solution.

2 (ε′-RVO step) Call the ε′-RVO with current θ∗k as input, and set flag to
true or false according to the output of the ε′-RVO.

3 (Exit cond.) If flag is true, then exit and return current solution θ∗ ← θ∗k ;
else set k ← k + 1 and goto 1.

‘

( )

( )
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Repetitive Scenario Design (RSD) Iterating scenario design and feasibility checks

Repetitive scenario design (RSD)
Randomized oracle

Theorem (RSD with ε′-RVO)
Let ε, ε′ ∈ [0, 1], ε′ ≤ ε, and N ≥ n be given. Define the event BadExit in which
the algorithm exits returning a “bad” solution θ∗:

BadExit
.

= {algorithm returns θ∗: V (θ∗) > ε}.

The following statements hold.

1

P{BadExit} ≤ Fbeta((1− ε′)No , ε
′No + 1; 1− ε)

1− H1,ε′(N,No)
βε(N).

2 The expected running time of the algorithm is ≤ (1− H1,ε′(N,No))−1.

3 The running time of the algorithm is ≤ k with probability
≥ 1− H1,ε′(N,No)k .

Here, Fbeta denotes the cumulative distribution of a beta density, and
H1,ε′(N,No) has an explicit expression in terms of beta-Binomial distributions.
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Repetitive scenario design (RSD)
Randomized oracle

A key quantity related to the expected running time of the algorithm is
H1,ε′(N,No), which is the upper tail of a beta-Binomial distribution.

It is useful to have a more manageable approximate expression:

Corollary

For No →∞ it holds that H1,ε′(N,No)→ βε′(N).

For large No , and ε′ ≤ ε, we have H1,ε′(N,No) ' βε′(N) ≥ βε(N), whence

K̂
.

=
1

1− H1,ε′(N,No)
' 1

1− βε′(N)
≥ 1

1− βε(N)
.

This last equation gives us an approximate, asymptotic, expression for the
upper bound K̂ on the expected running time of the algorithm.
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Example
Robust finite-horizon input design

We consider a system of the form

x(t + 1) = A(q)x(t) + Bu(t), t = 0, 1, . . . ; x(0) = 0,

where u(t) is a scalar input signal, and A(q) ∈ Rna,na is an interval uncertain
matrix of the form

A(q) = A0 +
na∑

i,j=1

qijeie
>
j , |qij | ≤ ρ, ρ > 0,

where ei is a vector of all zeros, except for a one in the i-th entry.

Given a final time T ≥ 1 and a target state x̄ , the problem is to determine
an input sequence {u(0), . . . , u(T − 1)} such that (i) the state x(T ) is
robustly contained in a small ball around the target state x̄ , and (ii) the
input energy

∑
k u(k)2 is not too large.
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Example
Robust finite-horizon input design

We write x(T ) = x(T ; q) = R(q)u, where R(q) is the T -reachability
matrix of the system (for a given q), and u

.
= (u(0), . . . , u(T − 1)).

We formally express our design goals in the form of minimization of a level γ
such that

‖x(T ; q)− x̄‖2
2 + λ

T−1∑
t=0

u(t)2 ≤ γ,

where λ ≥ 0 is a tradeoff parameter. Letting θ = (u, γ), the problem is
formally stated in our framework by setting

f (θ, q) ≤ 0, where f (θ, q)
.

= ‖R(q)u − x̄‖2
2 + λ‖u‖2

2 − γ.
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Example
Robust finite-horizon input design

Assuming that the uncertain parameter q is random and uniformly
distributed in the hypercube Q = [−ρ, ρ]na×na , our scenario design problem
takes the following form:

min
θ=(u,γ)

γ

s.t.: f (θ, q(i)) ≤ 0, i = 1, . . . ,N.

We set T = 10, thus the size of the decision variable θ = (u, γ) of the
scenario problem is n = 11.

We set the desired level of probabilistic robustness to 1− ε = 0.995, i.e.,
ε = 0.005, and require a level of failure of the randomized method below
β = 10−12, that is, we require the randomized method to return a good
solution with “practical certainty.”
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Example
Robust finite-horizon input design

Using a plain (one-shot) scenario approach, imposing βε(N) ≤ β would
require N ≥ 10440 scenarios.

Let us now see how we can reduce this N figure by resorting to a repetitive
scenario design approach.

Let us fix ε′ = 0.7ε = 0.0035, thus δ = ε− ε′ = 0.0015.

A plot of the (asymptotic) bound on expected number of iterations,
(1− βε′(N))−1, as a function of N is shown in the next figure. We see from
this plot, for instance, that the choice N = 2000 corresponds to a value of
about 10 for the upper bound on the expected number of iterations.

Let us choose this value of N = 2000 for the scenario block.
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Example
Robust finite-horizon input design
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Log-log plot of (1− βε′(N))−1 vs. N.
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Example
Robust finite-horizon input design

For N = 2000 a reliability level β = 10−12 is achieved for No ≥ 62403. Let
us then choose No = 63000 samples to be used in the oracle.

With the above choices we have H1,ε′(N,No) = 0.8963, thus the algorithm’s
upper bound on average running time is

K̂ = (1− H1,ε′(N,No))−1 = 9.64.

Notice that this upper bound is conservative (worst case) in general. Thus,
we may expect a performance which is in practice better than the one
predicted by the bound.
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Example
Robust finite-horizon input design

We considered the following data:

A0 =


−0.7214 −0.0578 0.2757 0.7255 0.2171 0.3901
0.5704 0.1762 0.3684 −0.0971 0.6822 −0.5604
−1.3983 −0.1795 0.1511 1.0531 −0.1601 0.9031
−0.6308 −0.0058 0.4422 0.8169 0.512 0.2105
0.7539 0.1423 0.2039 −0.3757 0.5088 −0.6081
−1.3571 −0.1769 0.1076 1.0032 −0.1781 0.9151

 , B =


0
1
0
1
0
1



We set target state x̄ = [1,−1/2, 2, 1,−1, 2]>, ρ = 0.001, and λ = 0.005.

We run the RSD algorithm for 100 times, and on each test run we recorded
the number of iterations and the solution returned upon exit. The algorithm
exited most of the times in a single repetition, with a maximum of 4
repetitions.
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Example
Robust finite-horizon input design
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(a) Repetitions of RSD algorithm in the 100 test runs.
(b) Levels of empirical violation probability evaluated by the oracle upon exit, in
the 100 test runs.
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Example
Robust finite-horizon input design

Computational improvements

Substantial reduction of the number of design samples (from the 10440 to
just 2000), at the price of a very moderate number of repetitions (the
average number of repetitions in the 100 test runs was 1.27).

On average over the 100 test experiments, the RSD method (with
N = 2000, No = 63000) required 224 s to return a solution.

A plain, one-shot, scenario optimization with N = 10440 scenarios required
2790 s. Using the RSD approach instead of a plain one-shot scenario design
thus yielded a reduction in computing time of about one order of magnitude.

The reason for this improvement is due to the fact that the scenario
optimization problem in the RSD approach (which uses N = 2000 scenarios)
took about 173 s to be solved on a typical run, and the subsequent
randomized oracle test (with No = 63000) is computationally cheap, taking
only about 3.16 s.
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Conclusions

Scenario design is a flexible technology that permits attacking a class of
robust design problems that are hard to deal with via conventional
deterministic methods.

Widely used in control design. Recently became particularly popular in
Model Predictive Control.

Interesting data-driven approaches in many other domains (e.g.,
computational finance).

The repetitive approach further broadens the applicability of scenario design
to problems in which dealing with “large N” may be a problem in practice
(e.g., robust SDP problems).

THANK YOU!
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Beta and Beta-Binomial distributions

We denote by beta(α, β) the beta density function with parameters α > 0, β > 0:

beta(α, β; t)
.
=

1

B(α, β)
tα−1(1− t)β−1

, t ∈ [0, 1],

where B(α, β)
.
=

Γ(α)Γ(β)
Γ(α+β)

, and Γ is the Gamma function (for α, β integers, it holds that B(α, β)−1 = α
(
α+β−1
β−1

)
).

We denote by Fbeta(α, β) the cumulative distribution function of the beta(α, β) density:

Fbeta(α, β; t)
.
=

∫ t

0
beta(α, β;ϑ)dϑ, t ∈ [0, 1].

Fbeta(α, β; t) is the regularized incomplete beta function, and a standard result establishes that, for α, β integers, it
holds that

Fbeta(α, β; t) =

α+β−1∑
i=α

(
α + β − 1

i

)
t i (1− t)α+β−1−i

.

The number x of successes in d independent Bernoulli trials each having success probability t is a random variable with
Binomial distribution

P{x ≤ z} =

bzc∑
i=0

(
d

i

)
t i (1− t)d−i ≤ Fbeta(d − z, z + 1; 1− t) = 1− Fbeta(z + 1, d − z; t).

The number x of successes in d binary trials, where each trial has success probability t, and t is itself a random variable
with beta(α, β) distribution, is a random variable with so-called beta-Binomial density: for i = 0, 1, . . . , d ,

fbb(d, α, β; i)
.
=

(
d

i

)
B(i + α, d − i + β)

B(α, β)
.
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