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Chapter 1: History and Perspective



Machine Learning (aka, Al) Successes

First Generation (‘90-'00): the backend
— e.g., fraud detection, search, supply-chain management

Second Generation (‘00-'10): the human side
— e.g., recommendation systems, commerce, social media

Third Generation (‘10-now): pattern recognition
— e.g., speech recognition, computer vision, translation

Fourth Generation (emerging): decisions and markets
— not just one agent making a decision or sequence of decisions
— rather, a huge interconnected web of data, agents, decisions

— many new challenges!



Perspectives on Al

* The classical “human-imitative” perspective
— cf. Al in the movies, interactive home robotics

* The “intelligence augmentation” (IA) perspective

— cf. search engines, recommendation systems, natural language
translation

— the system need not be intelligent itself, but it reveals patterns
that humans can make use of

« The “intelligent infrastructure” (ll) perspective

— cf. transportation, intelligent dwellings, urban planning

— large-scale, distributed collections of data flows and loosely-
coupled decisions

M. Jordan (2018), “Artificial Intelligence: The Revolution Hasn’t Happened Yet”,
Medium.



Human-Imitative Al Isn’t the Right Goal

* Problems studied from the “human-imitative” perspective
aren’t necessarily the same as those that arise in the IA
or Il perspectives

— unfortunately, the “Al solutions” being deployed for the latter are
often those developed in service of the former

« “Autonomy” shouldn’t be our main goal; rather our goal
should be the development of small intelligences that
work well with each other and with humans

« To make an overall system behave intelligently, it is
neither necessary or sufficient to make each component
of the system be intelligent



Near-Term Challenges in |

Error control for multiple decisions
Systems that create markets

Designing systems that can provide meaningful, calibrated notions of their
uncertainty

Achieving real-time performance goals

Managing cloud-edge interactions

Designing systems that can find abstractions quickly
Provenance in systems that learn and predict
Designing systems that can explain their decisions
Finding causes and performing causal reasoning

Systems that pursue long-term goals, and actively collect data in service of
those goals

Achieving fairness and diversity

Robustness in the face of unexpected situations
Robustness in the face of adversaries

Sharing data among individuals and organizations
Protecting privacy and issues of data ownership



Multiple Decisions: The Load-Balancing
Problem

* In many Il problems, a system doesn’'t make just a single
decision, or a sequence of decisions, but huge numbers
of linked decisions in each moment

— those decisions often interact
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Multiple Decisions: The Load-Balancing
Problem

* In many Il problems, a system doesn’'t make just a single
decision, or a sequence of decisions, but huge numbers
of decentralized decisions in each moment

— those decisions often interact
— they interact when there is a scarcity of resources

« To manage scarcity of resources in large-scale decision
making, “Al” isn’t enough; we need concepts from
market design
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« ltems are “similar” are they are bought together by
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Classical Recommendation Systems

* Arecord is kept of each customer’s purchases

Customers are “similar” if they buy similar sets of
items

ltems are “similar” are they are bought together by
multiple customers

Recommendations are made on the basis of these
similarities

In existing systems, recommendations are made
independently

That won’t work in the real world!
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Multiple Decisions: Load Balancing

Suppose that recommending a certain movie is a good
business decision (e.g., because it's very popular)

Is it OK to recommend the same movie to everyone?

Is it OK to recommend the same book to everyone?

Is it OK to recommend the same restaurant to everyone?
Is it OK to recommend the same street to every driver?

Is it OK to recommend the same stock purchase to
everyone?

Such problems are best approached via the creation of
markets

— restaurants bid on customers

— street segments bid on drivers



The Consequences

« By creating a market based on the data flows, new jobs
are created!

« So here’s a way that Al can be a job creator, and not
(mostly) a job killer

« This can be done in a wide range of other domains, not
just music

— entertainment
— information services

— personal services
— etc



Near-Term Challenges in |

Error control for multiple decisions
Systems that create markets

Designing systems that can provide meaningful, calibrated notions of their
uncertainty

Achieving real-time performance goals

Managing cloud-edge interactions

Designing systems that can find abstractions quickly
Provenance in systems that learn and predict
Designing systems that can explain their decisions
Finding causes and performing causal reasoning

Systems that pursue long-term goals, and actively collect data in service of
those goals

Achieving fairness and diversity

Robustness in the face of unexpected situations
Robustness in the face of adversaries

Sharing data among individuals and organizations
Protecting privacy and issues of data ownership



Chapter 2: In the Engine Room



Algorithmic and Theoretical Progress

* Nonconvex optimization
— avoidance of saddle points
— rates that have dimension dependence
— acceleration, dynamical systems and lower bounds
— statistical guarantees from optimization guarantees

« Computationally-efficient sampling

— nonconvex functions
— nonreversible MCMC
— links to optimization

« Market design
— approach to saddle points
— recommendations and two-way markets



Computation and Statistics

« A Grand Challenge of our era: tradeoffs between
statistical inference and computation
— most data analysis problems have a time budget
— and often they’re embedded in a control problem

* Optimization has provided the computational model for
this effort (computer science, not so much)
— it's provided the algorithms and the insight

* On the other hand, modern large-scale statistics has
posed new challenges for optimization

— millions of variables, millions of terms, sampling issues,
nonconvexity, need for confidence intervals, parallel/distributed
platforms, etc



Computation and Statistics (cont)

 Modern large-scale statistics has posed new challenges
for optimization
— millions of variables, millions of terms, sampling issues,
nonconvexity, need for confidence intervals, parallel/distributed
platforms, etc
« Current algorithmic focus: what can we do with the
following ingredients?
— gradients
— stochastics
— acceleration

« Current theoretical focus: placing lower bounds from
statistics and optimization in contact with each other



Part |: How to Escape Saddle Points
Efficiently

with Chi Jin, Praneeth Netrapalli, Rong Ge,
and Sham Kakade




The Importance of Saddle Points

Strict saddle point Non-strict saddle point

 How to escape?
— need to have a negative eigenvalue that's strictly negative

* How to escape efficiently?
— in high dimensions how do we find the direction of escape?
— should we expect exponential complexity in dimension?



Some Well-Behaved Nonconvex Problems

« PCA, CCA, Matrix Factorization

* Orthogonal Tensor Decomposition (Ge, Huang, Jin,
Yang, 2015)

« Complete Dictionary Learning (Sun et al, 2015)
 Phase Retrieval (Sun et al, 2015)

« Matrix Sensing (Bhojanapalli et al, 2016; Park et al,
2016)

« Symmetric Matrix Completion (Ge et al, 2016)

« Matrix Sensing/Completion, Robust PCA (Ge, Jin,
Zheng, 2017)

* The problems have no spurious local minima and all
saddle points are strict



A Few Facts

Gradient descent will asymptotically avoid saddle
points (Lee, Simchowitz, Jordan & Recht, 2017)

Gradient descent can take exponential time to
escape saddle points (Du, Jin, Lee, Jordan, & Singh,
2017)

Stochastic gradient descent can escape saddle
points in polynomial time (Ge, Huang, Jin & Yuan,
2015)

— but that'’s still not an explanation for its practical success
Can we prove a stronger theorem?



Optimization

Consider problem:
min f(x)
x€R?
Gradient Descent (GD):
Xer1 = X — NV F(X¢).

Convex: converges to global minimum;  dimension-free iterations.




Convergence to FOSP

Function f(-) is ~-smooth (or gradient Lipschitz)
VXl,X27 ||Vf(X1) - Vf(XQ)H S EHXI - X2H.
Point x is an e-first-order stationary point (e-FOSP) if

IVFX)I < e

Theorem [GD Converges to FOSP (Nesterov, 1998)]
For ¢-smooth function, GD with n = 1/¢ finds e-FOSP in iterations:

20(F(x0) — F*)

€2

*Number of iterations is dimension free.



Nonconvex Optimization

Non-convex: converges to Stationary Point (SP) Vf(x) = 0.

SP : local min / local max / saddle points

Many applications: no spurious local min (see full list later).



Definitions and Algorithm

Function f(-) is p-Hessian Lipschitz if
Vx1,xe, [|V2F(x1) = V2F(x2)]| < pllx1 — xe|.
Point x is an e-second-order stationary point (e-SOSP) if

VAl <& and  Amn(V2F(x)) > —/pe



Definitions and Algorithm

Function f(-) is p-Hessian Lipschitz if
Vx1,xe, [|V2F(x1) = V2F(x2)]| < pllx1 — xe|.
Point x is an e-second-order stationary point (e-SOSP) if

VAl <& and  Amn(V2F(x)) > —/pe

Algorithm Perturbed Gradient Descent (PGD)
1. fort =0,1,... do

2. if perturbation condition holds then
3. Xt Xt + &, & uniformly ~ Bo(r)
4. Xep1 — Xe — VIF(x)

Adds perturbation when [|[Vf(x;)|| < € no more than once per T steps.



Main Result

Theorem [PGD Converges to SOSP]

For ¢-smooth and p-Hessian Lipschitz function f, PGD with n = O(1/¢)
and proper choice of r, T w.h.p. finds e-SOSP in iterations:

) (f(f(Xo) - f*))

€2

*Dimension dependence in iteration is log*(d) (almost dimension free).



Main Result

Theorem [PGD Converges to SOSP]

For ¢-smooth and p-Hessian Lipschitz function f, PGD with n = O(1/¢)
and proper choice of r, T w.h.p. finds e-SOSP in iterations:

) <f(f(><o) - f*)>

€2

*Dimension dependence in iteration is log*(d) (almost dimension free).

| GD(Nesterov 1998) PGD(This Work)
Assumptions {-grad-Lip {-grad-Lip + p-Hessian-Lip
Guarantees e-FOSP e-SOSP

Iterations 20(f(xo) — *)/€? O(L(f(xo) — £*)/€?)




Geometry and Dynamics around Saddle Points

Challenge: non-constant Hessian + large step size n = O(1/¢).

Around saddle point, stuck region forms a non-flat “pancake” shape.

Key Observation: although we don't know its shape, we know it's thin!
(Based on an analysis of two nearly coupled sequences)



How Fast Can We Go?

« Important role of lower bounds (Nemirovski & Yudin)

— strip away inessential aspects of the problem to reveal
fundamentals

« The acceleration phenomenon (Nesterov)

— achieve the lower bounds

— second-order dynamics

— a conceptual mystery
« Qur perspective: it's essential to go to continuous

time

— the notion of "acceleration” requires a continuum topology to
support it



Part Il: Variational, Hamiltonian and
Symplectic Perspectives on Acceleration

with Andre Wibisono, Ashia Wilson and
Michael Betancourt




Accelerated gradient descent
Setting: Unconstrained convex optimization

min f
XE]IRd (X)

» Classical gradient descent:

Xp+1 = Xk — BV (xk)

obtains a convergence rate of O(1/k)



Accelerated gradient descent
Setting: Unconstrained convex optimization

min f
XE]IRd (X)

» Classical gradient descent:
Xk+1 = Xk — BV F(xk)
obtains a convergence rate of O(1/k)

> Accelerated gradient descent:

Ye+1 = Xk — BVF(xk)
41 = (= X)Yit1 + Ay

obtains the (optimal) convergence rate of O(1/k?)



Accelerated methods: Continuous time perspective

» Gradient descent is discretization of gradient flow
Xt - _Vf(Xt)

(and mirror descent is discretization of natural gradient flow)
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Accelerated methods: Continuous time perspective

» Gradient descent is discretization of gradient flow
Xt - _Vf(Xt)

(and mirror descent is discretization of natural gradient flow)

» Su, Boyd, Candes '14: Continuous time limit of accelerated
gradient descent is a second-order ODE

. 3.

» These ODEs are obtained by taking continuous time limits. Is
there a deeper generative mechanism?

Our work: A general variational approach to acceleration

A systematic discretization methodology



Bregman Lagrangian

L(x,x,t) = erto <Dh(x + e %%, x) — e f(x))

Variational problem over curves:

n /E(Xt,Xt, t) dt

Optimal curve is characterized by Euler-Lagrange equation:

! t

oL oL -
dt {8 (Xt7Xt7 )} = a(XhXt) t)

E-L equation for Bregman Lagrangian under ideal scaling:

. . . —1
X + (€% — )X, + e2o+h [v%(xt tex,)| VF(X)=0



Mysteries

Why can’t we discretize the dynamics when we are
using exponentially fast clocks?

What happens when we arrive at a clock speed that
we can discretize?

How do we discretize once it's possible?



Towards A Symplectic Perspective

« We've discussed discretization of Lagrangian-based
dynamics

« Discretization of Lagrangian dynamics is often fragile
and requires small step sizes

« We can build more robust solutions by taking a Legendre
transform and considering a Hamiltonian formalism:

L(q,v,t) = H(q,p,t,&)

dg dv IR dg dp dt d€
dt’ dt dr’' d7’ dr’ dr




Symplectic Integration of Bregman

Hamiltonian
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f(x)

Symplectic vs Nesterov
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Symplectic vs Nesterov

p=2,N=2,C=0.0625,¢=0.25
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Part |ll: Acceleration and Saddle Points

with Chi Jin and Praneeth Netrapalli



Hamiltonian Analysis

f () between x, and x, + v,

Not too nonconvex

Too nonconvex
(Negative curvature exploitation)

AGD step

v, || small

Do an : : :
. Move in v, direction
amortized
analysis r

f(x;) +2—117 lv,||* decreases

Enough decrease
in a single step



Convergence Result

PAGD Converges to SOSP Faster (Jin et al. 2017)
For ¢-gradient Lipschitz and p-Hessian Lipschitz function f, PAGD with
proper choice of 1,0, r, T,7,s w.h.p. finds e-SOSP in iterations:

5 (el/zp“‘*(f(xo) - f*))

c7/4

‘ Strongly Convex ‘ Nonconvex (SOSP)
. {-grad-Lip & {-grad-Lip &
Assumptions . .
a-str-convex p-Hessian-Lip
(Perturbed) GD o)) O(Ar - 1/€?)
(Perturbed) AGD O(\/2/) O(As - 02 s Jeh)
Condition x la L/\/pe
Improvement VE VE

14 /14 Michael Jordan AGD Escape Saddle Points Faster than GD



Part |VV: Acceleration and Stochastics

with Xiang Cheng, Niladri Chatterji and Peter
Bartlett



Acceleration and Stochastics

« Can we accelerate diffusions?
 There have been negative results...

« ...but they’ve focused on classical overdamped
diffusions



Acceleration and Stochastics

Can we accelerate diffusions?
There have been negative results...

...but they’ve focused on classical overdamped
diffusions

Inspired by our work on acceleration, can we accelerate
underdamped diffusions?



Overdamped Langevin MCMC

Described by the Stochastic Differential Equation (SDE):

where U(x):R* - R and B, is standard Brownian motion.
The stationary distribution is p*(x) « exp(U(x))

Corresponding Markov Chain Monte Carlo Algorithm
(MCMC):
Ferns = Trs — VU(Fs) + V26,

where § is the step-size and &, ~ N(0,1;x4)



Guarantees under Convexity

Assuming U(x) is L-smooth and m-strongly convex:

Dalalyan’14: Guarantees in Total Variation
If n>0 (E%) then, TV(p™,p*) <€

Durmus & Moulines’16: Guarantees in 2-Wasserstein

If n>0 (E%) then, W,(p™,p*) <e¢
Cheng and Bartlett'17: Guarantees in KL divergence

If n 2> 0 (%) then, KL(p™,p*) < e



Underdamped Langevin Diffusion

Described by the second-order equation:

dxt — Utdt
dvt — —)/Utdt + AVU(xt)dt + \/ 2]//1 dBt

2
The stationary distribution is p*(x, v) « exp (—U (x) — %)

Intuitively, x; is the position and v; is the velocity

VU (x;) is the force and y is the drag coefficient



Quadratic Improvement

Let p(™ denote the distribution of (¥,,5, ¥,,5). Assume U (x) is
strongly convex

Cheng, Chatterji, Bartlett, Jordan ’17:
Vd

lfn=>0 (?) then Wz(p("),p*) <€

Compare with Durmus & Moulines '16 (Overdamped)
Ifn >0 (;iz) then W, (p™,p*) < €



Proof ldea: Reflection Coupling

Tricky to prove continuous-time process contracts. Consider

two processes,

where x, ~ po and y, ~ p*. Couple these through Brownian motion

2-(xp =y )y —y)'

4B = [laxa - xe — el
2

dB¥

“reflection along line separating the two processes”



Reduction to One Dimension

By 1t6’'s Lemma we can monitor the evolution of the separation distance
dlx; — vel, = — dt + 2v2dB}

'1-d random walk’
Two cases are possible

1. If |x; — y¢|, < R then we have strong convexity; the drift helps.
2. If |x; —y:|, = R then the drift hurts us, but Brownian motion helps stick’

Rates not exponential in d as we have a 1-d random walk

*Under a clever choice of Lyapunov function.



Part V: Optimization vs. Sampling

With Yi-An Ma, Yuansi Chen, Chi Jin and Nicolas Flammarion



Sampling vs. Optimization: The Tortoise
and the Hare

* Folk knowledge: Sampling is slow, while optimization is
fast
— but sampling provides inferences, while optimization only
provides point estimates

« But there hasn’t been a clear theoretical analysis that
establishes this folk knowledge as true
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Sampling vs. Optimization: The Tortoise
and the Hare

Folk knowledge: Sampling is slow, while optimization is
fast

— but sampling provides inferences, while optimization only
provides point estimates

But there hasn’t been a clear theoretical analysis that
establishes this folk knowledge as true

Is it really true?
Define the mixing time:

7(e,p") = min{k | [p* — p*|lrv <€}

We'll study the Unadjusted Langevin Algorithm (ULA)
and the Metropolis-Adjusted Langevin Algorithm (MALA)



Sampling

Theorem. For p* o< e”Y, we assume that U is m-strongly convex outside of a

region of radius R and L-smooth. Let kK = L/m denote the condition number of
U. Let p® = N(0, %I) and let € € (0,1). Then ULA satisfies

Turale,p’) <O (632LR2&2% In (%)) .

€ €

For MALA,

3/2
2 1
Tvarna(e,p?) <O (elGLR k1o (dlnﬁ;+ln (—)) d1/2> .

€



Optimization

Theorem. For any radius R > 0, Lipschitz and strong convexity constants L >
2m > 0, probability 0 < p < 1, there exists an objective function U (x) where
r € R? and U is L-Lipschitz smooth and m-strongly convex for ||z|2 > 2R, such
that for any optimization algorithm that inputs {U (z), VU (z),...,V"U(x)}, for
some n, at least

K>0 (p- (LR2/e)d/2>

steps are required for € < O(LR?) so that P(|U(xg) — U(x*)| < €) > p.



Part VI. Acceleration and Sampling

With Yi-An Ma, Niladri Chatterji, and Xiang Cheng



Acceleration of SDEs

The underdamped Langevin stochastic differential
equation is Nesterov acceleration on the manifold of

probability distributions, with respect to the KL
divergence (Ma, et al., to appear)



Part VII. Market Design Meets Gradient-
Based Learning

with Lydia Liu, Horia Mania and Eric Mazumdar




Two Examples of Current Projects

« How to find saddle points in high dimensions?

— not just any saddle points; we want to find the Nash equilibria
(and only the Nash equilibria)

« Competitive bandits and two-way markets

— how to find the “best action” when supervised training data is not
available, when other agents are also searching for best actions,
and when there is conflict (e.g., scarcity)
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Chapter 3: Concluding Remarks



Machine Learning (aka, Al)

First Generation (‘90-'00): the backend
— e.g., fraud detection, search, supply-chain management

Second Generation (‘00-'10): the human side
— e.g., recommendation systems, commerce, social media

Third Generation (‘10-now): pattern recognition
— e.g., speech recognition, computer vision, translation

Fourth Generation (emerging): decisions and markets
— not just one agent making a decision or sequence of decisions
— but a huge interconnected web of data, agents, decisions

— many new challenges!

What do these developments have to do with "intelligence™?



Al = Data + Algorithms + Markets

« Computers are currently gathering huge amounts of data,
for and about humans, to be fed into learning algorithms
— often the goal is to learn to imitate humans
— arelated goal is to provide personalized services to humans
— but there’s a lot of guessing going on about what people want

« Services are best provided in the context of a market;
market design can eliminate much of the guesswork

— when data flows in a market, the underlying system can learn
from that data, so that the market provides better services

— fairness arises not from providing the same service to everyone,
but by allowing individual utilities to be expressed
« Learning algorithms provide the glue between data and
the market



Consequences for IT Business Models

Many modern IT companies collect data as part of

providing a service on a platform

— often the value provided by these services is limited

— so the monetization comes from advertising

— i.e., many companies are in fact creating markets based on data
and learning algorithms, but these markets only link the IT
company and the advertisers

Humans are treated as a product, not as a player in a

market

— the results (ads) are not based on the utility (happiness) of the
providers of the data, and does not pay them for their data

This is broken---humans should be able to participate fully
In a market in which their data are being used
— they should not be treated as mere product or mere observers



Executive Summary

ML (Al) has come of age

« Butitis far from being a solid engineering discipline that
can yield robust, scalable solutions to modern data-
analytic problems

« There are many hard problems involving uncertainty,
inference, decision-making, robustness and scale that
are far from being solved

— not to mention economic, social and legal issues





