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Chapter 1: History and Perspective



Machine Learning (aka, AI) Successes

• First Generation (‘90-’00): the backend
– e.g., fraud detection, search, supply-chain management

• Second Generation (‘00-’10): the human side
– e.g., recommendation systems, commerce, social media

• Third Generation (‘10-now): pattern recognition
– e.g., speech recognition, computer vision, translation

• Fourth Generation (emerging): decisions and markets
– not just one agent making a decision or sequence of decisions
– rather, a huge interconnected web of data, agents, decisions
– many new challenges!



Perspectives on AI

• The classical “human-imitative” perspective
– cf. AI in the movies, interactive home robotics

• The “intelligence augmentation” (IA) perspective
– cf. search engines, recommendation systems, natural language 

translation
– the system need not be intelligent itself, but it reveals patterns 

that humans can make use of
• The “intelligent infrastructure” (II) perspective

– cf. transportation, intelligent dwellings, urban planning
– large-scale, distributed collections of data flows and loosely-

coupled decisions

M. Jordan (2018), “Artificial Intelligence: The Revolution Hasn’t Happened Yet”, 
Medium.



Human-Imitative AI Isn’t the Right Goal

• Problems studied from the “human-imitative” perspective 
aren’t necessarily the same as those that arise in the IA 
or II perspectives
– unfortunately, the “AI solutions” being deployed for the latter are 

often those developed in service of the former

• “Autonomy” shouldn’t be our main goal; rather our goal 
should be the development of small intelligences that 
work well with each other and with humans

• To make an overall system behave intelligently, it is 
neither necessary or sufficient to make each component 
of the system be intelligent



Near-Term Challenges in II
• Error control for multiple decisions 
• Systems that create markets
• Designing systems that can provide meaningful, calibrated notions of their 

uncertainty
• Achieving real-time performance goals
• Managing cloud-edge interactions
• Designing systems that can find abstractions quickly
• Provenance in systems that learn and predict
• Designing systems that can explain their decisions
• Finding causes and performing causal reasoning
• Systems that pursue long-term goals, and actively collect data in service of 

those goals
• Achieving fairness and diversity
• Robustness in the face of unexpected situations
• Robustness in the face of adversaries
• Sharing data among individuals and organizations
• Protecting privacy and issues of data ownership



Multiple Decisions: The Load-Balancing 
Problem

• In many II problems, a system doesn’t make just a single 
decision, or a sequence of decisions, but huge numbers 
of linked decisions in each moment
– those decisions often interact



Multiple Decisions: The Load-Balancing 
Problem

• In many II problems, a system doesn’t make just a single 
decision, or a sequence of decisions, but huge numbers 
of linked decisions in each moment
– those decisions often interact
– they interact when there is a scarcity of resources



Multiple Decisions: The Load-Balancing 
Problem

• In many II problems, a system doesn’t make just a single 
decision, or a sequence of decisions, but huge numbers 
of decentralized decisions in each moment
– those decisions often interact
– they interact when there is a scarcity of resources

• To manage scarcity of resources in large-scale decision 
making, “AI” isn’t enough; we need concepts from 
market design
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Classical Recommendation Systems

• A record is kept of each customer’s purchases
• Customers are “similar” if they buy similar sets of 

items
• Items are “similar” are they are bought together by 

multiple customers
• Recommendations are made on the basis of these 

similarities
• In existing systems, recommendations are made 
independently

• That won’t work in the real world!
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Multiple Decisions: Load Balancing

• Suppose that recommending a certain movie is a good 
business decision (e.g., because it’s very popular)

• Is it OK to recommend the same movie to everyone?
• Is it OK to recommend the same book to everyone?
• Is it OK to recommend the same restaurant to everyone?
• Is it OK to recommend the same street to every driver?
• Is it OK to recommend the same stock purchase to 

everyone?

• Such problems are best approached via the creation of 
markets
– restaurants bid on customers
– street segments bid on drivers



The Consequences

• By creating a market based on the data flows, new jobs 
are created!

• So here’s a way that AI can be a job creator, and not 
(mostly) a job killer

• This can be done in a wide range of other domains, not 
just music
– entertainment
– information services
– personal services
– etc



Near-Term Challenges in II
• Error control for multiple decisions 
• Systems that create markets
• Designing systems that can provide meaningful, calibrated notions of their 

uncertainty
• Achieving real-time performance goals
• Managing cloud-edge interactions
• Designing systems that can find abstractions quickly
• Provenance in systems that learn and predict
• Designing systems that can explain their decisions
• Finding causes and performing causal reasoning
• Systems that pursue long-term goals, and actively collect data in service of 

those goals
• Achieving fairness and diversity
• Robustness in the face of unexpected situations
• Robustness in the face of adversaries
• Sharing data among individuals and organizations
• Protecting privacy and issues of data ownership



Chapter 2: In the Engine Room



Algorithmic and Theoretical Progress

• Nonconvex optimization
– avoidance of saddle points
– rates that have dimension dependence
– acceleration, dynamical systems and lower bounds
– statistical guarantees from optimization guarantees

• Computationally-efficient sampling
– nonconvex functions
– nonreversible MCMC
– links to optimization

• Market design
– approach to saddle points
– recommendations and two-way markets



Computation and Statistics

• A Grand Challenge of our era: tradeoffs between 
statistical inference and computation
– most data analysis problems have a time budget
– and often they’re embedded in a control problem

• Optimization has provided the computational model for
this effort (computer science, not so much)
– it’s provided the algorithms and the insight

• On the other hand, modern large-scale statistics has 
posed new challenges for optimization
– millions of variables, millions of terms, sampling issues, 

nonconvexity, need for confidence intervals, parallel/distributed 
platforms, etc



Computation and Statistics (cont)

• Modern large-scale statistics has posed new challenges 
for optimization
– millions of variables, millions of terms, sampling issues, 

nonconvexity, need for confidence intervals, parallel/distributed 
platforms, etc

• Current algorithmic focus: what can we do with the 
following ingredients? 
– gradients
– stochastics
– acceleration

• Current theoretical focus: placing lower bounds from 
statistics and optimization in contact with each other



Part I: How to Escape Saddle Points 
Efficiently 

with Chi Jin, Praneeth Netrapalli, Rong Ge, 
and Sham Kakade



The Importance of Saddle Points 

•  How to escape? 
–  need to have a negative eigenvalue that’s strictly negative 

•  How to escape efficiently? 
–  in high dimensions how do we find the direction of escape? 
–  should we expect exponential complexity in dimension?   



Some Well-Behaved Nonconvex Problems 

•  PCA, CCA, Matrix Factorization 
•  Orthogonal Tensor Decomposition (Ge, Huang, Jin, 

Yang, 2015) 
•  Complete Dictionary Learning (Sun et al, 2015) 
•  Phase Retrieval (Sun et al, 2015) 
•  Matrix Sensing (Bhojanapalli et al, 2016; Park et al, 

2016) 
•  Symmetric Matrix Completion (Ge et al, 2016) 
•  Matrix Sensing/Completion, Robust PCA (Ge, Jin, 

Zheng, 2017) 

•  The problems have no spurious local minima and all 
saddle points are strict 

 



A Few Facts 

•  Gradient descent will asymptotically avoid saddle 
points (Lee, Simchowitz, Jordan & Recht, 2017) 

•  Gradient descent can take exponential time to 
escape saddle points (Du, Jin, Lee, Jordan, & Singh, 
2017) 

•  Stochastic gradient descent can escape saddle 
points in polynomial time (Ge, Huang, Jin & Yuan, 
2015) 
–  but that’s still not an explanation for its practical success 

•  Can we prove a stronger theorem? 

 



Optimization

Consider problem:
min
x∈Rd

f (x)

Gradient Descent (GD):

xt+1 = xt − η∇f (xt).

Convex: converges to global minimum; dimension-free iterations.



Convergence to FOSP

Function f (·) is `-smooth (or gradient Lipschitz)

∀x1, x2, ‖∇f (x1)−∇f (x2)‖ ≤ `‖x1 − x2‖.

Point x is an ε-first-order stationary point (ε-FOSP) if

‖∇f (x)‖ ≤ ε

Theorem [GD Converges to FOSP (Nesterov, 1998)]
For `-smooth function, GD with η = 1/` finds ε-FOSP in iterations:

2`(f (x0)− f ?)

ε2

*Number of iterations is dimension free.



Nonconvex Optimization

Non-convex: converges to Stationary Point (SP) ∇f (x) = 0.

SP : local min / local max / saddle points

Many applications: no spurious local min (see full list later).



Definitions and Algorithm

Function f (·) is ρ-Hessian Lipschitz if

∀x1, x2, ‖∇2f (x1)−∇2f (x2)‖ ≤ ρ‖x1 − x2‖.

Point x is an ε-second-order stationary point (ε-SOSP) if

‖∇f (x)‖ ≤ ε, and λmin(∇2f (x)) ≥ −√ρε

Algorithm Perturbed Gradient Descent (PGD)

1. for t = 0, 1, . . . do

2. if perturbation condition holds then

3. xt ← xt + ξt , ξt uniformly ∼ B0(r)

4. xt+1 ← xt − η∇f (xt)

Adds perturbation when ‖∇f (xt)‖ ≤ ε; no more than once per T steps.
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Main Result

Theorem [PGD Converges to SOSP]
For `-smooth and ρ-Hessian Lipschitz function f , PGD with η = O(1/`)
and proper choice of r ,T w.h.p. finds ε-SOSP in iterations:

Õ

(
`(f (x0)− f ?)

ε2

)

*Dimension dependence in iteration is log4(d) (almost dimension free).

GD(Nesterov 1998) PGD(This Work)

Assumptions `-grad-Lip `-grad-Lip + ρ-Hessian-Lip

Guarantees ε-FOSP ε-SOSP

Iterations 2`(f (x0)− f ?)/ε2 Õ(`(f (x0)− f ?)/ε2)
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Geometry and Dynamics around Saddle Points

Challenge: non-constant Hessian + large step size η = O(1/`).

Around saddle point, stuck region forms a non-flat “pancake” shape.

w

Key Observation: although we don’t know its shape, we know it’s thin!
(Based on an analysis of two nearly coupled sequences)



How Fast Can We Go?

• Important role of lower bounds (Nemirovski & Yudin)
– strip away inessential aspects of the problem to reveal 

fundamentals

• The acceleration phenomenon (Nesterov)
– achieve the lower bounds
– second-order dynamics
– a conceptual mystery

• Our perspective: it’s essential to go to continuous 
time
– the notion of ”acceleration” requires a continuum topology to 

support it



Part II: Variational, Hamiltonian and
Symplectic Perspectives on Acceleration

with Andre Wibisono, Ashia Wilson and 
Michael Betancourt 



Accelerated gradient descent

Setting: Unconstrained convex optimization

min
x∈Rd

f (x)

I Classical gradient descent:

xk+1 = xk − β∇f (xk)

obtains a convergence rate of O(1/k)

I Accelerated gradient descent:

yk+1 = xk − β∇f (xk)

xk+1 = (1− λk)yk+1 + λkyk

obtains the (optimal) convergence rate of O(1/k2)
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Accelerated methods: Continuous time perspective

I Gradient descent is discretization of gradient flow

Ẋt = −∇f (Xt)

(and mirror descent is discretization of natural gradient flow)

I Su, Boyd, Candes ’14: Continuous time limit of accelerated
gradient descent is a second-order ODE

Ẍt +
3

t
Ẋt +∇f (Xt) = 0

I These ODEs are obtained by taking continuous time limits. Is
there a deeper generative mechanism?

Our work: A general variational approach to acceleration

A systematic discretization methodology
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Bregman Lagrangian

L(x , ẋ , t) = eγt+αt

(
Dh(x + e−αt ẋ , x)− eβt f (x)

)

Variational problem over curves:

min
X

∫
L(Xt , Ẋt , t) dt

t

x

Optimal curve is characterized by Euler-Lagrange equation:

d

dt

{
∂L
∂ẋ

(Xt , Ẋt , t)

}
=
∂L
∂x

(Xt , Ẋt , t)

E-L equation for Bregman Lagrangian under ideal scaling:

Ẍt + (eαt − α̇t)Ẋt + e2αt+βt
[
∇2h(Xt + e−αt Ẋt)

]−1
∇f (Xt) = 0



Mysteries

• Why can’t we discretize the dynamics when we are 
using exponentially fast clocks?

• What happens when we arrive at a clock speed that 
we can discretize?

• How do we discretize once it’s possible?



 Towards A Symplectic Perspective 
• We’ve discussed discretization of Lagrangian-based

dynamics
• Discretization of Lagrangian dynamics is often fragile

and requires small step sizes
• We can build more robust solutions by taking a Legendre 

transform and considering a Hamiltonian formalism:



Symplectic Integration of Bregman 
Hamiltonian 



Symplectic vs Nesterov
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Part III: Acceleration and Saddle Points

with Chi Jin and Praneeth Netrapalli



Hamiltonian Analysis
! ⋅ between #$ and #$ + &$

! #$ + '
() &$ ( decreases

AGD step

&$*' = 0 Move in ±&$ direction

Not too nonconvex Too nonconvex
(Negative curvature exploitation)

&$ large &$ small

Enough decrease 
in a single step

Do an 
amortized 

analysis



Convergence Result

PAGD Converges to SOSP Faster (Jin et al. 2017)

For `-gradient Lipschitz and ρ-Hessian Lipschitz function f , PAGD with

proper choice of η, θ, r ,T , γ, s w.h.p. finds ε-SOSP in iterations:

Õ

(
`1/2ρ1/4(f (x0)− f ?)

ε7/4

)

Strongly Convex Nonconvex (SOSP)

Assumptions
`-grad-Lip &

α-str-convex

`-grad-Lip &

ρ-Hessian-Lip

(Perturbed) GD Õ(`/α) Õ(∆f · `/ε2)

(Perturbed) AGD Õ(
√
`/α) Õ(∆f · `

1
2 ρ

1
4 /ε

7
4 )

Condition κ `/α `/
√
ρε

Improvement
√
κ

√
κ

14 / 14 Michael Jordan AGD Escape Saddle Points Faster than GD



Part IV: Acceleration and Stochastics

with Xiang Cheng, Niladri Chatterji and Peter 
Bartlett



Acceleration and Stochastics

• Can we accelerate diffusions?
• There have been negative results…
• …but they’ve focused on classical overdamped

diffusions



Acceleration and Stochastics

• Can we accelerate diffusions?
• There have been negative results…
• …but they’ve focused on classical overdamped

diffusions
• Inspired by our work on acceleration, can we accelerate 

underdamped diffusions?



Overdamped Langevin MCMC

Described by the Stochastic Differential Equation (SDE):
!"# = −∇' "# !( + 2!+#

where ' " : -. → - and +# is standard Brownian motion.
The stationary distribution is 0∗ " ∝ exp ' "

Corresponding Markov Chain Monte Carlo Algorithm 
(MCMC):

6" 789 : = 6"7: − ∇' 6"7: + 2;<7
where ; is the step-size and <7 ∼ >(0, B.×.)



Guarantees under Convexity

Assuming ! " is #-smooth and $-strongly convex:

Dalalyan’14: Guarantees in Total Variation
If  % ≥ ' (

)* then, +,(. / , .∗) ≤ 4

Durmus & Moulines’16: Guarantees in 2-Wasserstein

If  % ≥ ' (
)* then, 56(. / , .∗) ≤ 4

Cheng and Bartlett’17: Guarantees in KL divergence

If  % ≥ ' (
)* then, KL(. / , .∗) ≤ 4



Underdamped Langevin Diffusion

Described by the second-order equation:

!"# = %#!&
!%# = −(%#!& + *∇, "# !& + 2(* !.#

The stationary distribution is /∗ ", % ∝ exp −, " − |7|88
9:

Intuitively, "# is the position and %# is the velocity

∇, "# is the force and ( is the drag coefficient



Quadratic Improvement

Let !(#) denote the distribution of %&#', %)#' . Assume + & is
strongly convex

Cheng, Chatterji, Bartlett, Jordan ’17:

If . ≥ 0 1
2 then 34 ! # , !∗ ≤ 7

Compare with Durmus & Moulines ’16 (Overdamped)

If . ≥ 0 1
28 then 34 ! # , !∗ ≤ 7



Proof Idea: Reflection Coupling

Tricky to prove continuous-time process contracts. Consider 
two processes,

!"# = −∇' "# !( + 2 !+#,
!-# = −∇' -# !( + 2 !+#.

where "/ ∼ 1/ and -/ ∼ 1∗. Couple these through Brownian motion

!+#. = 34×4 −
2 ⋅ "# − -# "# − -# 7

|"# − -#|99
!+#,

“reflection along line separating the two processes”



Reduction to One Dimension

By Itô’s Lemma we can monitor the evolution of the separation distance 

!|#$ − &$|' = − #$ − &$
|#$ − &$|'

, ∇+ #$ − ∇+ &$ !, + 2 2!/$0

‘Drift’ ’1-d random walk’

Two cases are possible

1. If |#$ − &$|' ≤ 2 then we have strong convexity; the drift helps.

2. If |#$ − &$|' ≥ 2 then the drift hurts us, but Brownian motion helps stick*.

*Under a clever choice of Lyapunov function.

Rates not exponential in ! as we have a 1-! random walk



Part V: Optimization vs. Sampling
With Yi-An Ma, Yuansi Chen, Chi Jin and Nicolas Flammarion



Sampling vs. Optimization: The Tortoise 
and the Hare

• Folk knowledge:  Sampling is slow, while optimization is 
fast
– but sampling provides inferences, while optimization only 

provides point estimates
• But there hasn’t been a clear theoretical analysis that 

establishes this folk knowledge as true
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Sampling vs. Optimization: The Tortoise 
and the Hare

• Folk knowledge:  Sampling is slow, while optimization is 
fast
– but sampling provides inferences, while optimization only 

provides point estimates
• But there hasn’t been a clear theoretical analysis that 

establishes this folk knowledge as true
• Is it really true?
• Define the mixing time:

• We’ll study the Unadjusted Langevin Algorithm (ULA) 
and the Metropolis-Adjusted Langevin Algorithm (MALA) 

⌧(✏, p0) = min{k | kpk � p⇤kTV  ✏}



Sampling

Theorem. For p⇤ / e�U
, we assume that U is m-strongly convex outside of a

region of radius R and L-smooth. Let  = L/m denote the condition number of

U . Let p0 = N (0, 1
LI) and let ✏ 2 (0, 1). Then ULA satisfies

⌧ULA(✏, p
0)  O

✓
e32LR2

2 d

✏2
ln

✓
d

✏2

◆◆
.

For MALA,

⌧MALA(✏, p
0)  O

 
e16LR2

1.5

✓
d ln+ ln

✓
1

✏

◆◆3/2

d1/2
!
.



Optimization

Theorem. For any radius R > 0, Lipschitz and strong convexity constants L �
2m > 0, probability 0 < p  1, there exists an objective function U(x) where

x 2 Rd
and U is L-Lipschitz smooth and m-strongly convex for kxk2 > 2R, such

that for any optimization algorithm that inputs {U(x),rU(x), . . . ,rn
U(x)}, for

some n, at least

K � O
⇣
p · (LR2

/✏)

d/2
⌘

steps are required for ✏  O(LR

2
) so that P (|U(xK)� U(x

⇤
)| < ✏) � p.



Part VI: Acceleration and Sampling
With Yi-An Ma, Niladri Chatterji, and Xiang Cheng



Acceleration of SDEs

• The underdamped Langevin stochastic differential 
equation is Nesterov acceleration on the manifold of 
probability distributions, with respect to the KL 
divergence (Ma, et al., to appear)



Part VII: Market Design Meets Gradient-
Based Learning

with Lydia Liu, Horia Mania and Eric Mazumdar



Two Examples of Current Projects

• How to find saddle points in high dimensions? 

– not just any saddle points; we want to find the Nash equilibria
(and only the Nash equilibria)

• Competitive bandits and two-way markets

– how to find the “best action” when supervised training data is not
available, when other agents are also searching for best actions, 

and when there is conflict (e.g., scarcity)







Chapter 3: Concluding Remarks



Machine Learning (aka, AI)

• First Generation (‘90-’00): the backend
– e.g., fraud detection, search, supply-chain management

• Second Generation (‘00-’10): the human side
– e.g., recommendation systems, commerce, social media

• Third Generation (‘10-now): pattern recognition
– e.g., speech recognition, computer vision, translation

• Fourth Generation (emerging): decisions and markets
– not just one agent making a decision or sequence of decisions
– but a huge interconnected web of data, agents, decisions
– many new challenges!

• What do these developments have to do with ”intelligence”?



AI = Data + Algorithms + Markets

• Computers are currently gathering huge amounts of data, 
for and about humans, to be fed into learning algorithms
– often the goal is to learn to imitate humans
– a related goal is to provide personalized services to humans
– but there’s a lot of guessing going on about what people want

• Services are best provided in the context of a market; 
market design can eliminate much of the guesswork
– when data flows in a market, the underlying system can learn 

from that data, so that the market provides better services
– fairness arises not from providing the same service to everyone, 

but by allowing individual utilities to be expressed
• Learning algorithms provide the glue between data and 

the market 



Consequences for IT Business Models
• Many modern IT companies collect data as part of 

providing a service on a platform
– often the value provided by these services is limited
– so the monetization comes from advertising
– i.e., many companies are in fact creating markets based on data 

and learning algorithms, but these markets only link the IT 
company and the advertisers

• Humans are treated as a product, not as a player in a 
market
– the results (ads) are not based on the utility (happiness) of the 

providers of the data, and does not pay them for their data
• This is broken---humans should be able to participate fully 

in a market in which their data are being used
– they should not be treated as mere product or mere observers



Executive Summary

• ML (AI) has come of age
• But it is far from being a solid engineering discipline that 

can yield robust, scalable solutions to modern data-
analytic problems

• There are many hard problems involving uncertainty, 
inference, decision-making, robustness and scale that 
are far from being solved
– not to mention economic, social and legal issues




