
Machine Learning:

Michael I. Jordan
University of California, Berkeley

December 16, 2018

Dynamics, Economics and Stochastics

What Intelligent Systems Currently Exist?

• Brains and Minds

What Intelligent Systems Currently Exist?

• Brains and Minds

• Markets

Chapter 1: History and Perspective

Machine Learning (aka, AI) Successes

• First Generation (‘90-’00): the backend
– e.g., fraud detection, search, supply-chain management

• Second Generation (‘00-’10): the human side
– e.g., recommendation systems, commerce, social media

• Third Generation (‘10-now): pattern recognition
– e.g., speech recognition, computer vision, translation

• Fourth Generation (emerging): decisions and markets
– not just one agent making a decision or sequence of decisions
– rather, a huge interconnected web of data, agents, decisions
– many new challenges!

Perspectives on AI

• The classical “human-imitative” perspective
– cf. AI in the movies, interactive home robotics

• The “intelligence augmentation” (IA) perspective
– cf. search engines, recommendation systems, natural language

translation
– the system need not be intelligent itself, but it reveals patterns

that humans can make use of
• The “intelligent infrastructure” (II) perspective

– cf. transportation, intelligent dwellings, urban planning
– large-scale, distributed collections of data flows and loosely-

coupled decisions

M. Jordan (2018), “Artificial Intelligence: The Revolution Hasn’t Happened Yet”,
Medium.

Human-Imitative AI Isn’t the Right Goal

• Problems studied from the “human-imitative” perspective
aren’t necessarily the same as those that arise in the IA
or II perspectives
– unfortunately, the “AI solutions” being deployed for the latter are

often those developed in service of the former

• “Autonomy” shouldn’t be our main goal; rather our goal
should be the development of small intelligences that
work well with each other and with humans

• To make an overall system behave intelligently, it is
neither necessary or sufficient to make each component
of the system be intelligent

Near-Term Challenges in II
• Error control for multiple decisions
• Systems that create markets
• Designing systems that can provide meaningful, calibrated notions of their

uncertainty
• Achieving real-time performance goals
• Managing cloud-edge interactions
• Designing systems that can find abstractions quickly
• Provenance in systems that learn and predict
• Designing systems that can explain their decisions
• Finding causes and performing causal reasoning
• Systems that pursue long-term goals, and actively collect data in service of

those goals
• Achieving fairness and diversity
• Robustness in the face of unexpected situations
• Robustness in the face of adversaries
• Sharing data among individuals and organizations
• Protecting privacy and issues of data ownership

Multiple Decisions: The Load-Balancing
Problem

• In many II problems, a system doesn’t make just a single
decision, or a sequence of decisions, but huge numbers
of linked decisions in each moment
– those decisions often interact

Multiple Decisions: The Load-Balancing
Problem

• In many II problems, a system doesn’t make just a single
decision, or a sequence of decisions, but huge numbers
of linked decisions in each moment
– those decisions often interact
– they interact when there is a scarcity of resources

Multiple Decisions: The Load-Balancing
Problem

• In many II problems, a system doesn’t make just a single
decision, or a sequence of decisions, but huge numbers
of decentralized decisions in each moment
– those decisions often interact
– they interact when there is a scarcity of resources

• To manage scarcity of resources in large-scale decision
making, “AI” isn’t enough; we need concepts from
market design

Classical Recommendation Systems

• A record is kept of each customer’s purchases
• Customers are “similar” if they buy similar sets of

items
• Items are “similar” are they are bought together by

multiple customers

Classical Recommendation Systems

• A record is kept of each customer’s purchases
• Customers are “similar” if they buy similar sets of

items
• Items are “similar” are they are bought together by

multiple customers
• Recommendations are made on the basis of these

similarities
• In existing systems, recommendations are made
independently

Classical Recommendation Systems

• A record is kept of each customer’s purchases
• Customers are “similar” if they buy similar sets of

items
• Items are “similar” are they are bought together by

multiple customers
• Recommendations are made on the basis of these

similarities
• In existing systems, recommendations are made
independently

• That won’t work in the real world!

Multiple Decisions: Load Balancing

• Suppose that recommending a certain movie is a good
business decision (e.g., because it’s very popular)

• Is it OK to recommend the same movie to everyone?

Multiple Decisions: Load Balancing

• Suppose that recommending a certain movie is a good
business decision (e.g., because it’s very popular)

• Is it OK to recommend the same movie to everyone?
• Is it OK to recommend the same book to everyone?

Multiple Decisions: Load Balancing

• Suppose that recommending a certain movie is a good
business decision (e.g., because it’s very popular)

• Is it OK to recommend the same movie to everyone?
• Is it OK to recommend the same book to everyone?
• Is it OK to recommend the same restaurant to everyone?

Multiple Decisions: Load Balancing

• Suppose that recommending a certain movie is a good
business decision (e.g., because it’s very popular)

• Is it OK to recommend the same movie to everyone?
• Is it OK to recommend the same book to everyone?
• Is it OK to recommend the same restaurant to everyone?
• Is it OK to recommend the same street to every driver?

Multiple Decisions: Load Balancing

• Suppose that recommending a certain movie is a good
business decision (e.g., because it’s very popular)

• Is it OK to recommend the same movie to everyone?
• Is it OK to recommend the same book to everyone?
• Is it OK to recommend the same restaurant to everyone?
• Is it OK to recommend the same street to every driver?
• Is it OK to recommend the same stock purchase to

everyone?

Multiple Decisions: Load Balancing

• Suppose that recommending a certain movie is a good
business decision (e.g., because it’s very popular)

• Is it OK to recommend the same movie to everyone?
• Is it OK to recommend the same book to everyone?
• Is it OK to recommend the same restaurant to everyone?
• Is it OK to recommend the same street to every driver?
• Is it OK to recommend the same stock purchase to

everyone?

• Such problems are best approached via the creation of
markets
– restaurants bid on customers
– street segments bid on drivers

The Consequences

• By creating a market based on the data flows, new jobs
are created!

• So here’s a way that AI can be a job creator, and not
(mostly) a job killer

• This can be done in a wide range of other domains, not
just music
– entertainment
– information services
– personal services
– etc

Near-Term Challenges in II
• Error control for multiple decisions
• Systems that create markets
• Designing systems that can provide meaningful, calibrated notions of their

uncertainty
• Achieving real-time performance goals
• Managing cloud-edge interactions
• Designing systems that can find abstractions quickly
• Provenance in systems that learn and predict
• Designing systems that can explain their decisions
• Finding causes and performing causal reasoning
• Systems that pursue long-term goals, and actively collect data in service of

those goals
• Achieving fairness and diversity
• Robustness in the face of unexpected situations
• Robustness in the face of adversaries
• Sharing data among individuals and organizations
• Protecting privacy and issues of data ownership

Chapter 2: In the Engine Room

Algorithmic and Theoretical Progress

• Nonconvex optimization
– avoidance of saddle points
– rates that have dimension dependence
– acceleration, dynamical systems and lower bounds
– statistical guarantees from optimization guarantees

• Computationally-efficient sampling
– nonconvex functions
– nonreversible MCMC
– links to optimization

• Market design
– approach to saddle points
– recommendations and two-way markets

Computation and Statistics

• A Grand Challenge of our era: tradeoffs between
statistical inference and computation
– most data analysis problems have a time budget
– and often they’re embedded in a control problem

• Optimization has provided the computational model for
this effort (computer science, not so much)
– it’s provided the algorithms and the insight

• On the other hand, modern large-scale statistics has
posed new challenges for optimization
– millions of variables, millions of terms, sampling issues,

nonconvexity, need for confidence intervals, parallel/distributed
platforms, etc

Computation and Statistics (cont)

• Modern large-scale statistics has posed new challenges
for optimization
– millions of variables, millions of terms, sampling issues,

nonconvexity, need for confidence intervals, parallel/distributed
platforms, etc

• Current algorithmic focus: what can we do with the
following ingredients?
– gradients
– stochastics
– acceleration

• Current theoretical focus: placing lower bounds from
statistics and optimization in contact with each other

Part I: How to Escape Saddle Points
Efficiently

with Chi Jin, Praneeth Netrapalli, Rong Ge,
and Sham Kakade

The Importance of Saddle Points

•  How to escape?
–  need to have a negative eigenvalue that’s strictly negative

•  How to escape efficiently?
–  in high dimensions how do we find the direction of escape?
–  should we expect exponential complexity in dimension?

Some Well-Behaved Nonconvex Problems

•  PCA, CCA, Matrix Factorization
•  Orthogonal Tensor Decomposition (Ge, Huang, Jin,

Yang, 2015)
•  Complete Dictionary Learning (Sun et al, 2015)
•  Phase Retrieval (Sun et al, 2015)
•  Matrix Sensing (Bhojanapalli et al, 2016; Park et al,

2016)
•  Symmetric Matrix Completion (Ge et al, 2016)
•  Matrix Sensing/Completion, Robust PCA (Ge, Jin,

Zheng, 2017)

•  The problems have no spurious local minima and all
saddle points are strict

A Few Facts

•  Gradient descent will asymptotically avoid saddle
points (Lee, Simchowitz, Jordan & Recht, 2017)

•  Gradient descent can take exponential time to
escape saddle points (Du, Jin, Lee, Jordan, & Singh,
2017)

•  Stochastic gradient descent can escape saddle
points in polynomial time (Ge, Huang, Jin & Yuan,
2015)
–  but that’s still not an explanation for its practical success

•  Can we prove a stronger theorem?

Optimization

Consider problem:
min
x∈Rd

f (x)

Gradient Descent (GD):

xt+1 = xt − η∇f (xt).

Convex: converges to global minimum; dimension-free iterations.

Convergence to FOSP

Function f (·) is `-smooth (or gradient Lipschitz)

∀x1, x2, ‖∇f (x1)−∇f (x2)‖ ≤ `‖x1 − x2‖.

Point x is an ε-first-order stationary point (ε-FOSP) if

‖∇f (x)‖ ≤ ε

Theorem [GD Converges to FOSP (Nesterov, 1998)]
For `-smooth function, GD with η = 1/` finds ε-FOSP in iterations:

2`(f (x0)− f ?)

ε2

*Number of iterations is dimension free.

Nonconvex Optimization

Non-convex: converges to Stationary Point (SP) ∇f (x) = 0.

SP : local min / local max / saddle points

Many applications: no spurious local min (see full list later).

Definitions and Algorithm

Function f (·) is ρ-Hessian Lipschitz if

∀x1, x2, ‖∇2f (x1)−∇2f (x2)‖ ≤ ρ‖x1 − x2‖.

Point x is an ε-second-order stationary point (ε-SOSP) if

‖∇f (x)‖ ≤ ε, and λmin(∇2f (x)) ≥ −√ρε

Algorithm Perturbed Gradient Descent (PGD)

1. for t = 0, 1, . . . do

2. if perturbation condition holds then

3. xt ← xt + ξt , ξt uniformly ∼ B0(r)

4. xt+1 ← xt − η∇f (xt)

Adds perturbation when ‖∇f (xt)‖ ≤ ε; no more than once per T steps.

Definitions and Algorithm

Function f (·) is ρ-Hessian Lipschitz if

∀x1, x2, ‖∇2f (x1)−∇2f (x2)‖ ≤ ρ‖x1 − x2‖.

Point x is an ε-second-order stationary point (ε-SOSP) if

‖∇f (x)‖ ≤ ε, and λmin(∇2f (x)) ≥ −√ρε

Algorithm Perturbed Gradient Descent (PGD)

1. for t = 0, 1, . . . do

2. if perturbation condition holds then

3. xt ← xt + ξt , ξt uniformly ∼ B0(r)

4. xt+1 ← xt − η∇f (xt)

Adds perturbation when ‖∇f (xt)‖ ≤ ε; no more than once per T steps.

Main Result

Theorem [PGD Converges to SOSP]
For `-smooth and ρ-Hessian Lipschitz function f , PGD with η = O(1/`)
and proper choice of r ,T w.h.p. finds ε-SOSP in iterations:

Õ

(
`(f (x0)− f ?)

ε2

)

*Dimension dependence in iteration is log4(d) (almost dimension free).

GD(Nesterov 1998) PGD(This Work)

Assumptions `-grad-Lip `-grad-Lip + ρ-Hessian-Lip

Guarantees ε-FOSP ε-SOSP

Iterations 2`(f (x0)− f ?)/ε2 Õ(`(f (x0)− f ?)/ε2)

Main Result

Theorem [PGD Converges to SOSP]
For `-smooth and ρ-Hessian Lipschitz function f , PGD with η = O(1/`)
and proper choice of r ,T w.h.p. finds ε-SOSP in iterations:

Õ

(
`(f (x0)− f ?)

ε2

)

*Dimension dependence in iteration is log4(d) (almost dimension free).

GD(Nesterov 1998) PGD(This Work)

Assumptions `-grad-Lip `-grad-Lip + ρ-Hessian-Lip

Guarantees ε-FOSP ε-SOSP

Iterations 2`(f (x0)− f ?)/ε2 Õ(`(f (x0)− f ?)/ε2)

Geometry and Dynamics around Saddle Points

Challenge: non-constant Hessian + large step size η = O(1/`).

Around saddle point, stuck region forms a non-flat “pancake” shape.

w

Key Observation: although we don’t know its shape, we know it’s thin!
(Based on an analysis of two nearly coupled sequences)

How Fast Can We Go?

• Important role of lower bounds (Nemirovski & Yudin)
– strip away inessential aspects of the problem to reveal

fundamentals

• The acceleration phenomenon (Nesterov)
– achieve the lower bounds
– second-order dynamics
– a conceptual mystery

• Our perspective: it’s essential to go to continuous
time
– the notion of ”acceleration” requires a continuum topology to

support it

Part II: Variational, Hamiltonian and
Symplectic Perspectives on Acceleration

with Andre Wibisono, Ashia Wilson and
Michael Betancourt

Accelerated gradient descent

Setting: Unconstrained convex optimization

min
x∈Rd

f (x)

I Classical gradient descent:

xk+1 = xk − β∇f (xk)

obtains a convergence rate of O(1/k)

I Accelerated gradient descent:

yk+1 = xk − β∇f (xk)

xk+1 = (1− λk)yk+1 + λkyk

obtains the (optimal) convergence rate of O(1/k2)

Accelerated gradient descent

Setting: Unconstrained convex optimization

min
x∈Rd

f (x)

I Classical gradient descent:

xk+1 = xk − β∇f (xk)

obtains a convergence rate of O(1/k)

I Accelerated gradient descent:

yk+1 = xk − β∇f (xk)

xk+1 = (1− λk)yk+1 + λkyk

obtains the (optimal) convergence rate of O(1/k2)

Accelerated methods: Continuous time perspective

I Gradient descent is discretization of gradient flow

Ẋt = −∇f (Xt)

(and mirror descent is discretization of natural gradient flow)

I Su, Boyd, Candes ’14: Continuous time limit of accelerated
gradient descent is a second-order ODE

Ẍt +
3

t
Ẋt +∇f (Xt) = 0

I These ODEs are obtained by taking continuous time limits. Is
there a deeper generative mechanism?

Our work: A general variational approach to acceleration

A systematic discretization methodology

Accelerated methods: Continuous time perspective

I Gradient descent is discretization of gradient flow

Ẋt = −∇f (Xt)

(and mirror descent is discretization of natural gradient flow)

I Su, Boyd, Candes ’14: Continuous time limit of accelerated
gradient descent is a second-order ODE

Ẍt +
3

t
Ẋt +∇f (Xt) = 0

I These ODEs are obtained by taking continuous time limits. Is
there a deeper generative mechanism?

Our work: A general variational approach to acceleration

A systematic discretization methodology

Accelerated methods: Continuous time perspective

I Gradient descent is discretization of gradient flow

Ẋt = −∇f (Xt)

(and mirror descent is discretization of natural gradient flow)

I Su, Boyd, Candes ’14: Continuous time limit of accelerated
gradient descent is a second-order ODE

Ẍt +
3

t
Ẋt +∇f (Xt) = 0

I These ODEs are obtained by taking continuous time limits. Is
there a deeper generative mechanism?

Our work: A general variational approach to acceleration

A systematic discretization methodology

Bregman Lagrangian

L(x , ẋ , t) = eγt+αt

(
Dh(x + e−αt ẋ , x)− eβt f (x)

)

Variational problem over curves:

min
X

∫
L(Xt , Ẋt , t) dt

t

x

Optimal curve is characterized by Euler-Lagrange equation:

d

dt

{
∂L
∂ẋ

(Xt , Ẋt , t)

}
=
∂L
∂x

(Xt , Ẋt , t)

E-L equation for Bregman Lagrangian under ideal scaling:

Ẍt + (eαt − α̇t)Ẋt + e2αt+βt
[
∇2h(Xt + e−αt Ẋt)

]−1
∇f (Xt) = 0

Mysteries

• Why can’t we discretize the dynamics when we are
using exponentially fast clocks?

• What happens when we arrive at a clock speed that
we can discretize?

• How do we discretize once it’s possible?

 Towards A Symplectic Perspective
• We’ve discussed discretization of Lagrangian-based

dynamics
• Discretization of Lagrangian dynamics is often fragile

and requires small step sizes
• We can build more robust solutions by taking a Legendre

transform and considering a Hamiltonian formalism:

Symplectic Integration of Bregman
Hamiltonian

Symplectic vs Nesterov

10
-8

10
-4

10
0

10
4

 1 10 100 1000 10000

Nesterov

Symplectic

f(
x
)

Iterations

p = 2, N = 2, C = 0.0625, ε = 0.1

Symplectic vs Nesterov

10
-8

10
-4

10
0

10
4

 1 10 100 1000 10000

Nesterov
Symplectic

f(
x
)

Iterations

p = 2, N = 2, C = 0.0625, ε = 0.25

Part III: Acceleration and Saddle Points

with Chi Jin and Praneeth Netrapalli

Hamiltonian Analysis
! ⋅ between #$ and #$ + &$

! #$ + '
() &$ (decreases

AGD step

&$*' = 0 Move in ±&$ direction

Not too nonconvex Too nonconvex
(Negative curvature exploitation)

&$ large &$ small

Enough decrease
in a single step

Do an
amortized

analysis

Convergence Result

PAGD Converges to SOSP Faster (Jin et al. 2017)

For `-gradient Lipschitz and ρ-Hessian Lipschitz function f , PAGD with

proper choice of η, θ, r ,T , γ, s w.h.p. finds ε-SOSP in iterations:

Õ

(
`1/2ρ1/4(f (x0)− f ?)

ε7/4

)

Strongly Convex Nonconvex (SOSP)

Assumptions
`-grad-Lip &

α-str-convex

`-grad-Lip &

ρ-Hessian-Lip

(Perturbed) GD Õ(`/α) Õ(∆f · `/ε2)

(Perturbed) AGD Õ(
√
`/α) Õ(∆f · `

1
2 ρ

1
4 /ε

7
4)

Condition κ `/α `/
√
ρε

Improvement
√
κ

√
κ

14 / 14 Michael Jordan AGD Escape Saddle Points Faster than GD

Part IV: Acceleration and Stochastics

with Xiang Cheng, Niladri Chatterji and Peter
Bartlett

Acceleration and Stochastics

• Can we accelerate diffusions?
• There have been negative results…
• …but they’ve focused on classical overdamped

diffusions

Acceleration and Stochastics

• Can we accelerate diffusions?
• There have been negative results…
• …but they’ve focused on classical overdamped

diffusions
• Inspired by our work on acceleration, can we accelerate

underdamped diffusions?

Overdamped Langevin MCMC

Described by the Stochastic Differential Equation (SDE):
!"# = −∇' "# !(+ 2!+#

where ' " : -. → - and +# is standard Brownian motion.
The stationary distribution is 0∗ " ∝ exp ' "

Corresponding Markov Chain Monte Carlo Algorithm
(MCMC):

6" 789 : = 6"7: − ∇' 6"7: + 2;<7
where ; is the step-size and <7 ∼ >(0, B.×.)

Guarantees under Convexity

Assuming ! " is #-smooth and $-strongly convex:

Dalalyan’14: Guarantees in Total Variation
If % ≥ ' (

)* then, +,(. / , .∗) ≤ 4

Durmus & Moulines’16: Guarantees in 2-Wasserstein

If % ≥ ' (
)* then, 56(. / , .∗) ≤ 4

Cheng and Bartlett’17: Guarantees in KL divergence

If % ≥ ' (
)* then, KL(. / , .∗) ≤ 4

Underdamped Langevin Diffusion

Described by the second-order equation:

!"# = %#!&
!%# = −(%#!& + *∇, "# !& + 2(* !.#

The stationary distribution is /∗ ", % ∝ exp −, " − |7|88
9:

Intuitively, "# is the position and %# is the velocity

∇, "# is the force and (is the drag coefficient

Quadratic Improvement

Let !(#) denote the distribution of %&#', %)#' . Assume + & is
strongly convex

Cheng, Chatterji, Bartlett, Jordan ’17:

If . ≥ 0 1
2 then 34 ! # , !∗ ≤ 7

Compare with Durmus & Moulines ’16 (Overdamped)

If . ≥ 0 1
28 then 34 ! # , !∗ ≤ 7

Proof Idea: Reflection Coupling

Tricky to prove continuous-time process contracts. Consider
two processes,

!"# = −∇' "# !(+ 2 !+#,
!-# = −∇' -# !(+ 2 !+#.

where "/ ∼ 1/ and -/ ∼ 1∗. Couple these through Brownian motion

!+#. = 34×4 −
2 ⋅ "# − -# "# − -# 7

|"# − -#|99
!+#,

“reflection along line separating the two processes”

Reduction to One Dimension

By Itô’s Lemma we can monitor the evolution of the separation distance

!|#$ − &$|' = − #$ − &$
|#$ − &$|'

, ∇+ #$ − ∇+ &$!, + 2 2!/$0

‘Drift’ ’1-d random walk’

Two cases are possible

1. If |#$ − &$|' ≤ 2 then we have strong convexity; the drift helps.

2. If |#$ − &$|' ≥ 2 then the drift hurts us, but Brownian motion helps stick*.

*Under a clever choice of Lyapunov function.

Rates not exponential in ! as we have a 1-! random walk

Part V: Optimization vs. Sampling
With Yi-An Ma, Yuansi Chen, Chi Jin and Nicolas Flammarion

Sampling vs. Optimization: The Tortoise
and the Hare

• Folk knowledge: Sampling is slow, while optimization is
fast
– but sampling provides inferences, while optimization only

provides point estimates
• But there hasn’t been a clear theoretical analysis that

establishes this folk knowledge as true

Sampling vs. Optimization: The Tortoise
and the Hare

• Folk knowledge: Sampling is slow, while optimization is
fast
– but sampling provides inferences, while optimization only

provides point estimates
• But there hasn’t been a clear theoretical analysis that

establishes this folk knowledge as true
• Is it really true?

Sampling vs. Optimization: The Tortoise
and the Hare

• Folk knowledge: Sampling is slow, while optimization is
fast
– but sampling provides inferences, while optimization only

provides point estimates
• But there hasn’t been a clear theoretical analysis that

establishes this folk knowledge as true
• Is it really true?
• Define the mixing time:

• We’ll study the Unadjusted Langevin Algorithm (ULA)
and the Metropolis-Adjusted Langevin Algorithm (MALA)

⌧(✏, p0) = min{k | kpk � p⇤kTV ✏}

Sampling

Theorem. For p⇤ / e�U
, we assume that U is m-strongly convex outside of a

region of radius R and L-smooth. Let = L/m denote the condition number of

U . Let p0 = N (0, 1
LI) and let ✏ 2 (0, 1). Then ULA satisfies

⌧ULA(✏, p
0) O

✓
e32LR2

2 d

✏2
ln

✓
d

✏2

◆◆
.

For MALA,

⌧MALA(✏, p
0) O

e16LR2

1.5

✓
d ln+ ln

✓
1

✏

◆◆3/2

d1/2
!
.

Optimization

Theorem. For any radius R > 0, Lipschitz and strong convexity constants L �
2m > 0, probability 0 < p 1, there exists an objective function U(x) where

x 2 Rd
and U is L-Lipschitz smooth and m-strongly convex for kxk2 > 2R, such

that for any optimization algorithm that inputs {U(x),rU(x), . . . ,rn
U(x)}, for

some n, at least

K � O
⇣
p · (LR2

/✏)

d/2
⌘

steps are required for ✏ O(LR

2
) so that P (|U(xK)� U(x

⇤
)| < ✏) � p.

Part VI: Acceleration and Sampling
With Yi-An Ma, Niladri Chatterji, and Xiang Cheng

Acceleration of SDEs

• The underdamped Langevin stochastic differential
equation is Nesterov acceleration on the manifold of
probability distributions, with respect to the KL
divergence (Ma, et al., to appear)

Part VII: Market Design Meets Gradient-
Based Learning

with Lydia Liu, Horia Mania and Eric Mazumdar

Two Examples of Current Projects

• How to find saddle points in high dimensions?

– not just any saddle points; we want to find the Nash equilibria
(and only the Nash equilibria)

• Competitive bandits and two-way markets

– how to find the “best action” when supervised training data is not
available, when other agents are also searching for best actions,

and when there is conflict (e.g., scarcity)

Chapter 3: Concluding Remarks

Machine Learning (aka, AI)

• First Generation (‘90-’00): the backend
– e.g., fraud detection, search, supply-chain management

• Second Generation (‘00-’10): the human side
– e.g., recommendation systems, commerce, social media

• Third Generation (‘10-now): pattern recognition
– e.g., speech recognition, computer vision, translation

• Fourth Generation (emerging): decisions and markets
– not just one agent making a decision or sequence of decisions
– but a huge interconnected web of data, agents, decisions
– many new challenges!

• What do these developments have to do with ”intelligence”?

AI = Data + Algorithms + Markets

• Computers are currently gathering huge amounts of data,
for and about humans, to be fed into learning algorithms
– often the goal is to learn to imitate humans
– a related goal is to provide personalized services to humans
– but there’s a lot of guessing going on about what people want

• Services are best provided in the context of a market;
market design can eliminate much of the guesswork
– when data flows in a market, the underlying system can learn

from that data, so that the market provides better services
– fairness arises not from providing the same service to everyone,

but by allowing individual utilities to be expressed
• Learning algorithms provide the glue between data and

the market

Consequences for IT Business Models
• Many modern IT companies collect data as part of

providing a service on a platform
– often the value provided by these services is limited
– so the monetization comes from advertising
– i.e., many companies are in fact creating markets based on data

and learning algorithms, but these markets only link the IT
company and the advertisers

• Humans are treated as a product, not as a player in a
market
– the results (ads) are not based on the utility (happiness) of the

providers of the data, and does not pay them for their data
• This is broken---humans should be able to participate fully

in a market in which their data are being used
– they should not be treated as mere product or mere observers

Executive Summary

• ML (AI) has come of age
• But it is far from being a solid engineering discipline that

can yield robust, scalable solutions to modern data-
analytic problems

• There are many hard problems involving uncertainty,
inference, decision-making, robustness and scale that
are far from being solved
– not to mention economic, social and legal issues

