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New Research Results

Integral Reinforcement Learning for Online Optimal Control
IRL for Online Solution of Multi-player Games
Multi-Player Games on Communication Graphs

Off-Policy Learning

Experience Replay

Bio-inspired Multi-Actor Critics

Output Synchronization of Heterogeneous MAS

Applications to:

Microgrid
Robotics
Industry Process Control




BRIAN L. STEVENS
FRANK L. LEWIS
ERIC N. JOHNSON

Optimality and Games

Optimal Control is Effective for:
Aircraft Autopilots

Vehicle engine control AchRAFT CONTROL

Aerospace Vehicles AND SIMULATION
Ship ContrOI THIRD EDITION
Industrial Process Control DYNAMICS, CONTROLS DESIGN,

AND AUTONOMOUS SYSTEMS

Multi-player Games Occur in:
Networked SyStemS Bandwidth ASSignment I THIRD EDITION
Economics '
Control Theory disturbance rejection
Team games
International politics
Sports strategy

But, optimal control and game solutions are found by OPTI MAI—

Offline soluti_on of Matrix Design equa_tions c U NTR OI_

A full dynamical model of the system is needed

Frank L. Lewis
Draguna Vrabie
weedbaterod VASSilis L. Syrmos



Optimal Control- The Linear Quadratic Regulator (LQOR)

User prescribed optimization criterion V(x(t)) = I(XT Qx+u'Ru) dz
t

(Q,R)
0=PA+A'P+Q-PBR'B'P Off-line Design Loop
et Using ARE
K=R"B'P
Control u . System X |' y
— K X = AX + Bu On-line real-time
7 Control Loop

An Offline Design Procedure
that requires Knowledge of system dynamics model (A,B)

System modeling is expensive, time consuming, and inaccurate



Adaptive Control is online and works for unknown systems.
Generally not Optimal

Optimal Control is off-line,
and needs to know the system dynamics to solve design eqs.

We want to find optimal control solutions
Online In real-time
Using adaptive control techniques
Without knowing the full dynamics

For nonlinear systems and general performance indices

Bring together Optimal Control and Adaptive Control

Reinforcement Learning turns out to be the key to this!



THIRD EDITION

Books

F.L. Lewis, D. Vrabie, and V. Syrmos,
Optimal Control, third edition, John Wiley and
Sons, New York, 2012.

New Chapters on:
Reinforcement Learning
Differential Games

OPTIMAL
CONTROL

Frank L. Lewis

Draguna Vrabie
comrighted materid Wassilis L. Syrmos

D. Vrabie, K. Vamvoudakis, and F.L. Lewis,
Optimal Adaptive Control and Differential
Games by Reinforcement Learning

Principles, IET Press,

2012. Draguna Vrabie, Kyriakos G.
Vamvoudakis and Frank L. Lewis




Feature

Reinforcement
Learning and Adaptive
Dynamic:Programming

for Feedback Controf

Frank L. Lewis
and Draguna Vrabie

L _

| Living organi smslear b‘f
E acting on thei viro

ment, I:-s ervin q the
sulting reward tlmul
and adjustiru;theiractinns

accordingly to improve

a the reward. This action-

based or Reinforcement
Learning can capture no-
tions of optimal behavior
ocourring in natural sys-
tems. We describe math-
ematical formulations for
Reinforcement Learning
anda practical implemen-
tation method known as
Adaptive Dynamic Pro-

3 gramming. These give us

insight into the design of
controllers for man-made
engineered systems that
both learn and exhibit op-
timal behavior:

F.L. Lewis and D. Vrabie,
“Reinforcement learning and
adaptive dynamic programming
for feedback control,”

IEEE Circuits & Systems
Magazine, Invited Feature Article,
pp. 32-50, Third Quarter 2009.

IEEE Control Systems Magazine,
F. Lewis, D. Vrabie, and K.
Vamvoudakis,

“Reinforcement learning and
feedback Control,” Dec. 2012



Game Theory-Baset

Gontrol System * ‘
Algorithms with
Real-Time --

.

Reinforcement S
Learning

HOW TO SOLVE =
MULTIPLAYER GAMES ONLINE o, -STQHT

KYRIAKOS G. VAMVOUDAKIS, HAMIDREZA MODARES,
BAHARE KIUMARSI, and FRANK L. LEWIS

plex hu gi d syst involve
an interconnection of multiple decision makers
(or agents) whose collective behavior depends on a
compilation of local decisions that are based on partial
information about each other and the state of the environment
[1]-{4]. Strategic interactions g ag: in these sy can be modeled as a
multiplayer simultaneous-move game [5]-[8]. The agents involved can have conflicting
objectives, and it is natural to make decisions based upon optimizing individual payoffs
or costs.

Game theory has been mostly pioneered in the field of economics; [9] considered a finite
win-loss game with perfect information between two players, and this classic example of
computable economics stands in the long and distinguished tradition of game theory that
goes back to [10] and [11]. Reference [12] discusses game theory in algorithmic modes but
not in what is today referred to as algorithmic gume theory after realizing the futility of

5
|
E
i

Digitad Ofyect Iens ier 20, T10/MCS, 2006, 2521481
Duie of pubiicasian: I3 fmusry 2017

1086 casXH AD2017IEEE FEDAUARY 2017 « IEEE CONTROL SYSTEMS MAGAZINE 33

Multi-player Game Solutions
IEEE Control Systems Magazine,
Dec 2017



RL for Markov Decision Processes (X,U,P,R)

X= states, U= controls Pi =06

- : R =2 *2%2
P= Probability of going to state x’ from state x A% R% =0

given that the control is u

R= Expected reward on going to state x’ from
state x given that the control is u

Expected Value of a policy 7(X,u)

k+T

Vo (x) = E;r{‘Jk,T | % =X}= En{z 7i_kri | X =X}
i=k

Optimal control problem
determine a policy 7z(x,u) to minimize the expected future cost

| . | =N Discrete State
optimal policy 7 (x,u)=argminV,”(s) =argmin Eﬁ{Zy' r| X, =X}.

optimal value Vi (X) = minV,"(x) = min E. O 7 rIx =x}.
i=k

Policy Iteration
Policy evaluation by Bellman eq. V;(X) = Zﬂ'j (X, U)Z P [RQX. +V, (x')] forall xe X .
Policy Improvement 7;1_+1(x, u) =arg umin Z lei' [R)‘(‘X, + 7/Vj (x')] for all xe X .

Policy Evaluation equation is a system of N simultaneous linear equations, one for each state.
Policy Improvement makes V7 (X) V7 (X)

R.S. Sutton and A.G. Barto, Reinforcement Learning— An Introduction, MIT Press, Cambridge, Massachusetts, 1998.
D.P. Bertsekas and J. N. Tsitsiklis, Neuro-Dynamic Programming, Athena Scientific, MA, 1996.
W.B. Powell, Approximate Dynamic Programming: Solving the Curses of Dimensionality, Wiley, New York, 2009.

\ 4



RL ADP has been developed for Discrete-Time Systems
Discrete-Time System Hamiltonian Function X = F(X.,u)

H (X, VV (X ), h) = (X, h(% ) + My (Xiea) = Vi (%)
» Directly leads to temporal difference techniques

» System dynamics does not occur
» Two occurrences of value allow APPROXIMATE DYNAMIC PROGRAMMING methods

Continuous-Time System Hamiltonian Function X=f(x,u)

H (x,ﬂ,u) =V +r(x,u) = (gj X+r(x,u)= (ﬂj f(x,u)+r(x,u)
OX OX OX

Leads to off-line solutions if system dynamics is known
Hard to do on-line learning

» How to define temporal difference?
» System dynamics DOES occur
» Only ONE occurrence of value gradient

How can one do Policy Iteration for Unknown Continuous-Time Systems?
What is Value Iteration for Continuous-Time systems?
How can one do ADP for CT Systems?



Bertsekas- Neurodynamic Programming
Discrete-Time Systems

Adaptive (Approximate) Dynamic Programming
Four ADP Methods proposed by Paul Werbos

Critic NN to approximate:

Heuristic dynamic programming AD HeurisFic dynamic _programming
Value Iteration (Watkins Q Learning)
Value V (Xk) Q function Q(X,,U,)
Dual heuristic programming AD Dual heuristic programming
0 0
Gradient N Gradients Q , Q
OX ox  ou

Action NN to approximate the Control

Bertsekas- Neurodynamic Programming

Barto & Bradtke- Q-learning proof (Imposed a settling time)



CT Systems- Derivation of Nonlinear Optimal Regulator
To find online methods for optimal control Focus on these two equations

Nonlinear System dynamics X = f(X,u) = f(X)+ g(x)u

Cost/value V (x(t)) = Tr(x, u) dt = T(Q(x) +u'Ru) dt

t

Ibniz gives
. . . . . ifferential €quivalent
Bellman Equation, in terms of the Hamiltonian function ‘

oV . AN ov Y /
H(x,&,u)=V+r(x,u)=(&j X+r(x,u) = (8xj (f(x)+g(x)u)+r(x/

Stationarity condition H_, Problem- System dynamics
ou ows up in Hamiltonian

_ oV
Stationary Control Policy | U=h(x)=-%R™g’ (x)&

* N\ T +N\T *
HJB equation o:(dlj f+Q(x)_%(ddLj gR—lgTddL , V(0)=0
X X

Off-line solution
HJB hard to solve. May not have smooth solution.
Dynamics must be known



CT Policy Iteration — a Reinforcement Learning Technique

Given any admissible policy U(X) =h(x)
The cost is given by solving the CT Bellman equation

T
0= N f(x,u)+r(x,u)=H (x,ﬂ,u) Scalar equation
OX OX

utility r(x,u) =Q(x)+u'Ru

Policy Iteration Solution

e Convergence proved by Leake and Liu

Pick stabilizing initial control policy h,(X) 1967,
) ) ) Saridis 1979 if Lyapunov eq. solved
Policy Evaluation - Find cost, Bellman eq. exactly
T e Beard & Saridis used Galerkin Integrals to
0= J f(x h.OCN+r(x.h (x solve Lyapunov eq.
( T ( )) ( T ( )) e Abu Khalaf & Lewis used NN to approx. V
Vj (O) =0 for nonlinear systems and proved
Policy improvement - Update control convergence
h — YR 1g” GVJ- Full system dynamics must be known
() == %Rg"(x) ystem
OX Off-line solution
Converges to solution of HIB M. Abu-Khalaf, F.L. Lewis, and J. Huang, “Policy

T T ) iterations on the Hamilton-Jacobi-Isaacs equation for H-

dv ¢ [ adVv RgT dVv infinity state feedback control with input saturation,”

Ay +Q(X) — % F F IEEE Trans. Automatic Control, vol. 51, no. 12, pp.

1989-1995, Dec. 2006.

0



Policy Iterations for the Linear Quadratic Regulator

System X = AX + Bu

Cost V(X(t)) = T(xT Qx+u'Ru)dr = x" (t)Px(t)

Differential equivalent is the Bellman equation

:
0= H(x,g—v,u):\/ +x ' Qx+Uu'Ru :2(2—\/) X+ X' Qx+u'Ru=2x"P(Ax+Bu)+x"Qx+u'Ru
X X

Given any stabilizing FB policy u=-—KX

The cost value is found by solving Lyapunov equation = Bellman equation

0=(A-BK) P+P(A-BK)+Q+K'RK

Optimal Control is
u=-R'B'Px=—-KX
Algebraic Riccati equation
0=PA+A'P+Q-PBR'B'P
Full system dynamics must be known
Off-line solution



LQR Policy iteration = Kleinman algorithm

1. For a given control policy u=-K;x solve for the cost:

0= AjT P, +P A +Q+ KjT RK; Bellman eq. = Lyapunov eq.
Matrix equation
Aj = A-— BKj
2. Improve policy:
_ p-1pT
Kijl =R™B Pj

= |f started with a stabilizing control policy K, the matrix P,
monotonically converges to the unique positive definite solution of
the Riccati equation.

= Every iteration step will return a stabilizing controller.
= The system has to be known.

OFF-LINE DESIGN
MUST SOLVE LYAPUNOV EQUATION AT EACH STEP. Kleinman 1968



Integral Reinforcement Learning praguna Vrabie 2009

value V(x(t))=Tr(x,u) dr:t]T r(x,u)dz+ T r(x,u)dr

Key ldea= US Patent

Lemma 1 — Draguna Vrabie

j
o:@_\’j f(x,u)+r(x,u)zH(x,aa—V,u), V(0)=0  Bad Bellman Equation
X X

Is equivalent to  Integral reinf. form (IRL) for the CT Bellman eq.

V(x(t)) = t]‘T r(x,uydz + V(X{+T)), V(0)=0
t Good Bellman Equation

Solves Bellman equation without knowing f(x,u)

Allows definition of temporal difference error for CT systems

e(t):—V(x(t))+t]Tr(x,u)dr +OVX(E+T))

t



Integral Reinforcement Learning (IRL)- Draguna Vrabie

IRL Policy iteration

Policy evaluation- IRL Bellman equ+aTtion CT Bellman eq.

Costupdate V, (X(1)) = j rou)dt + Vo (X(t+T))

t

f(x) and g(x) do not appear

T
Equivalent to 0= (G—Vj f(x,u)+r(x,u)=H (x,ﬁ—v,u)
OX OX

Solves Bellman eq. (nonlinear Lyapunov eq.) without knowing system dynamics

Policy improvement

_ oV,
Control gain update U, =h . (X)=—%R™g’ (X)a—xk g(x) needed for control update

Initial stabilizing control is needed

T N\T .
Converges to solution to HJB eq. 0= dv f+O(x) -2 dv R1 TdL
( dx Q) —3 dx g dx

D. Vrabie proved convergence to the optimal value and control
Automatica 2009, Neural Networks 2009



Approximate Dynamic Programming Implementation

Value Function Approximation (VFA) to Solve Bellman Equation Optimal Control
— Paul Werbos (ADP), Dimitri Bertsekas (NDP) and
t+T Adaptive Control
Vo (x@®) = [ (Q(¥)+u,Ruy )dt+V, (x(t+T)) come together
t On this slide.
Approximate value by Weierstrass Approximator Network \/ —=\\/ T ¢(X) Because of RL

t+T

W, g(x(1) = | (QU)+u,"Ru, ) dt + W g(x(t+T))

t

t+T

W, [¢(X(t)) —p(x(t +T))] = j (Q(X) +u,"Ru, )dt Scalar equation

with vector unknowns

— _
~

Reinforcement on time interval [t, t+T]

regression vector

Same form as standard System ID problems in Adaptive Control

Now use RLS or batch least-squares along the trajectory to get new weights W,

Then find updated FB

o =Nes(0 =~ RG22 = - 4R GT (x){aé(xx(g»} W,

Direct Optimal Adaptive Control for Partially Unknown CT Systems




Solving the IRL Bellman Equation

Py plz}
p12 p22

Need data from 3 time intervals to get 3 equations to solve for 3 unknowns

Solve for value function parameters { WT:[I% Pi pzz]

W, [Ag(x(®)] =W, [#(x(®) - g(x(t+T))]= [ (Q()+u, Ry, )dt = p(t)

t+2T

W, [AGX(+T )] =W, [f(x(t+T)-g(x(t+2T))]= [ (Q(¥)+u,Ru, )dt= p(t+T)

t+T
t+3T

W, [AG(X(t+2T)) ] =W, [#(x(t+2T)) - g(x(t+3T))]= j (Q(¥)+u,"Ru, )dt = p(t+2T)

t+2T

Put together

W, [Ag(x(1)) Ag(x(t+T)) Ag(x(t+2T))]=[p(t) pt+T) p(t+2T)]

Now solve by Batch least-squares

Or can use Recursive Least-Squares (RLS)



Integral Reinforcement Learning (IRL)

Solve Bellman Equation - Solves Lyapunov eq. without knowing dynamics

t+T

W™ [BO)-d(x(t+T)]= [ x(2)T (Q+K, RKy)x(zr)dz=p(t,t+T)
t

observe x(t) observe x(t+T)

observe x(t+2T)

Data set at time [t,t+T)

(x(t), p(t,t+T), x(t+T))

apply uk=K,x apply uk=K,x apply uk=K,x
> > : >
observe cost integral || observe cost integral || observe cost integral
ot t+T) p(t+T,t+2T) | p(t+2T,t+3T)
update P update P update P
v v v v
I | : |
t t+T t+2T t+3T

Do RLS until convergence to P,
Or use batch least-squares

E

This is a data-based approach that uses
measurements of x(t), u(t)
Instead of the plant dynamical model.

A is not needed anywhere ‘

update control gain

K., =R'B'P,




Gain update (Policy)

K A Interval T can vary
k

Control

Uy (t) = =K, x(t)

Reinforcement Intervals T need not be the same
They can be selected on-line in real time

Continuous-time control with discrete gain updates



Persistence of Excitation

W, [gx(1)) - g(xt+T)] = [ (Q(x)+u,Ru, )dt

\ )t
Y

Regression vector must be PE

Relates to choice of reinforcement interval T



Implementation

Policy evaluation
Need to solve online

t+T
Wi " [gx() - (x(t+T))]= | x(2)" (Q+Ky ' RK)x(z)dz=p(t,t+T)
t

Add a new state= Integral Reinforcement
p=xQx+u'Ru

This is the controller dynamics or memory



Draguna Vrabie

Solves Riccati Equation Online without knowing A matrix

CT time Actor-Critic Structure

Direct Optimal Adaptive Controller

Run RLS or use batch L.S.

To identify value of current control

ZOH T

Update FB gain after
Critic has converged

Critic

T X
%

T X

A 4

p =X Qx+u'Ru

Actor
— —

System
X = AX+ Bu

¥

A hybrid continuous/discrete dynamic controller
whose internal state is the observed cost over the interval

IRL requires a
Dynamic
Control
System

w/ MEMORY

Reinforcement interval T can be selected on line on the fly — can change



Optimal Adaptive IRL for CT systems

D. Vrabie, 2009

Actor / Critic structure for CT Systems

Reinforcement learning

_ oV j
U = hk+1(X) =-»R 1gT (X)ﬁ—xk f

Desired behavior/ .
Reference trajectoryT

t

t+T

Vex@) = [ r(xu)dt + Vi (x(t+T))

Theta waves 4-8 Hz

" (cost approximation/

Critic

policy evaluation)
Actorff Control R SyS tem
(control pgﬂicy) signal
4

Qutput/State

Motor control 200 Hz

A new structure of adaptive controllers



Data-driven Online Adaptive Optimal Control

DDO
User prescribed optimization criterion
J - (Q’ R) t+T
TORX®= [ X (@K RKOx@dr+x" +TRT) On-line Performance Loop
K., =R'B'P,
A A
Control u S
ystem X :
> . On-line Control Loo
— K X = AX + Bu g
- v

Data set at time [t,t+T)

(x(t), p(t, t+T),x(t+T))

An Online Supervisory Control Procedure
that requires no Knowledge of system dynamics model A

Automatically tunes the control gains in real time to optimize a user given cost function
Uses measured data (u(t),x(t)) along system trajectories



Optimal Control Design Allows a Lot of Design Freedom

The Power of Optimal Design

Once you can do optimal design that minimizes a performance index. many sorts of designs are
immediately possible.

Minimum energy
1 o
J= ;j.TTQI+MTRH dt
=0

Minimum fuel
1 = &]
J =E!:.TTQ.T+p|u| dt

Minimum time

T
J=[ldt=T
0
Constrained control inputs tanh(p) &
17 "o | 41 [
J=_I[Q(x)+ o (v)dv ]a‘f
2 0 0 _
Approximate minimum time with smooth control inputs / g
. P
_ 1 T R -1 i
J —;J‘ tanh(x Qx)+p] o (v)dv |dt - — —+ -1
<=0 0 _




IRL Value lteration - Draguna Vrabie
IRL Policy iteration Initial stabilizing control is needed

Policy evaluation- IRL Bellman Equation
t+1 CT PI Bellman eq.

Cost update i(x(t)):jr(x,uk)dt + Vi(X(t+T)) | =Lyapunov eq.

t

Policy improvement

oV,
U, :h+ X)=— R_lgT(X)—k
Control gain update o1 = a0 ==7% OX

* T * T *
v v Y
( ~ J f+Q(x)—%(—J gRgT ——

Converges to solution to HJB eq. 0
& G dx dx

IRL Value iteration Initial stabilizing control is NOT needed

Value evaluation- IRL Bellman Equa’cTion CT VI Bellman eq.

Cost update Vi (X(®) = [ rixu)dt + Vi (x(t+T))

t

Policy improvement
Vk+1

0
u.,=h..(X)=-—%R™'g"(x
Control gain update o1 = Mea(x) 2R78 () OX

Converges if T is small enough




Optimal Adaptive IRL for CT systems

D. Vrabie, 2009

Actor / Critic structure for CT Systems

Reinforcement learning

_ oV j
U = hk+1(X) =-»R 1gT (X)ﬁ—xk f

Desired behavior/ .
Reference trajectoryT

t

t+T

Vex@) = [ r(xu)dt + Vi (x(t+T))

Theta waves 4-8 Hz

" (cost approximation/

Critic

policy evaluation)
Actorff Control R SyS tem
(control pgﬂicy) signal
4

Qutput/State

Motor control 200 Hz

A new structure of adaptive controllers



FUHBUPEWISEEI Learning

theta rhythms 4-10 Hz

!

Output >
A

-,

Deliberative
evaluation

"Reinforcement Learning

li Reward
Out@ ut >
-y

~,

Limbic system

f

(Supervised Learning Target

+

{ Error
Motor control 200 Hz
control JE> Output ,

Figure 1. Leamning-oriented specialization of the cerebellum, the basal ganglia, and the cerebral
cortex (1], [2]. The cerebellum is specialized for supervised learning based on the ervor signal
encoded n the climbing fibers from the inferior olive. The basal ganglia are specialized for
reinforcement learning based on the reward signal encoded in the dopaminergic fibers from the
substantia nigra. The cevebral cortex is specialized for unsupervised learning based on the statistical

properties of the input signal.

Doya, Kimura, Kawato 2001



picture by E. Stingu

Summary of Motor Control in the Human Nervous System D. Vrabie

Cerebral cortex

gamma rhythms 30-100 Hz

P
Motor areas _
Long term : Unsupervised
learning
Memory Basal . —
functions gangh »  Thalamus Limbic|System | Hippocampus
A A
Reinforcement v thetalrhythms 4-10 Hz
Learning- dopamine » Cerebellum [*
Short term
A 4
Supervised Brainstem
learning 5

(eye movement)

vV VY

[ Spinal cord

olive

Kenji Doya

1 1 Motor control 200 Hz
reflex

A 4

Exteroceptive
receptors

Interoceptive
receptors

Muscle contraction
and movement

A

A

Hierarchy of multiple parallel loops
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Optimal Adaptive D. Vrabie, 2009

Integral Reinforcement Learning for CT systems
Policy Iteration gives the structure needed for online optimal solution

Actor / Critic structure for CT Systems
Vex@) = [ r(xu)dt + Vi (x(t+T))

t
Theta waves 4-8 Hz

___________ Critic

! " (cost approximation/
/ policy evaluation)

B oV j
U = hk+1(X) =-»R 19T (X)a—xk J;’

!
!
!

T

' ' /| Control
Desired beha‘\.florf . Actor{ ontro > System
Reference trajectory (control pghcy) signal

Qutput/State

4

Motor control 200 Hz

A new structure of adaptive controllers



Synchronous Online Solution of Optimal Control for Nonlinear Systems
Kyriakos Vamvoudakis

Critic Network
Take VFAas  V(X) =W," ¢, (X) +&(x) . VWV(X)=VaW,

t

Then IRLBellmaneq  V(x(t) = [ (Q()+u,Ru, )dt+V (x(t+T))

¢ =T

becomes W, p(x(t-T)) = _[ (Q(x) +Uu,' Ruk)dt +W.T g(X(1))

t—T
Action Network for Control Approximation

u(x)=—3R g7 (x)V g, Wy,

Define  Ag(x(t) = H(x(t)) - $(x(t—T))
LEYY t Lo TR
Bellman eq becomes  Ag@(X(t)) W, + J‘ (Q(X)+ZW2 D1W2j=0
t-T



Data-driven Online Synchronous Policy Iteration using IRL

Does not need to know f(x) Vamvoudakis & Vrabie

Theorem (Vamvoudakis & Vrabie)- Online Learning of Nonlinear Optimal Control

Let Ag(X(1)) =d(x(t))—¢(x(t—T)) be PE. Tune critic NN weights as

W, = —a, =24tU) E— [Aqﬁ(x(t)fv@l +

j [Q(X)%WZT 51V\72jdf} Learning the Value
(1+ AG(x(E)T A(x(1)

t-T

Tune actor NN weights as

W, = -a, (M, ~ RAGOKO) W, ) ~2a, Di (W, AG(x(1)' i, Learning the control policy
(2+Ag(x()" Ag(x(1)))

Then there exists an N, such that, for the number of hidden layer units N > N,

the closed-loop system state, the critic NN error W, =W, W,

and the actor NN error W, =W, —V\A/2 are UUB bounded.

Data set at time [t,t+T)

(x(t), p(t=T,1),x(t-T))




Lyapunov energy-based Proof:

L(t) =V (X) +%tr(\/\71T a, "W, ) +%tr(\/\72T a,"W,).
V(x)= Unknown solution to HIB eq.

dv ) dv ) dv
0= 22| F+Q(X) -1 —— | gRg" —
(dxj Q) 4(dxj Y

Guarantees stability

V\71 :W1 _V\71

V\72 :W1 _V\72

W,= Unknown LS solution to Bellman equation for given N

H (W, u) =W, Vg (f +gu)+Q(x)+u' Ru = ¢,



Synchronous Online Solution of Optimal Control for Nonlinear Systems

K.G. Vamvoudakis and F.L. Lewis, “Online actor-critic algorithm to solve the continuous-time infinite
horizon optimal control problem,” Automatica, vol. 46, no. 5, pp. 878-888, May 2010.

A new form of Adaptive Control with TWO tunable networks

Adaptive Critic structure

: : . t
Reinforcement learning Vi - a A(X(1) 2[A¢(x(t))TV\71+ f (Q(X)+ 3W2T51V\72jer
(L+Ad(xO) Ag(x(1) Cr 4
o Critic
/ * (cost approximation/
x . . — . T . f olicy evaluation
+AP(X(t)) Ap(x(t r
!
Desired behavior/ AG'[OI?F Control | Svstem Outguthtate
Reference trajectory ~ |(control pgﬂjcy) signal Y
4

Two Learning Networks
Tune them Simultaneously

A new structure of adaptive controllers



A New Class of Adaptive Control

Identify the V(x) =W T p(x)

W
O

ptimal Adaptive

|dentify the
|-
Indirect Adaptive

| ' e
Controller-
Direct Adaptive

A\ 4

v

Plant

control output




Data-driven Online Sdlution of Differenti;M_
Synchronous So'Iut-ion. of Multi*player Non Zero-sum Games




Multi-player Differential Games

Game Theory-Based
Gontrol System 1
Algorithms with

Real-Time ‘
Reinforcement &%
Learning

HOW TO SOLVE -
MULTIPLAYER GAMES ONLINE

KYRIAKOS G. VAMVOUDAKIS, HAMIDREZA MODARES,
BAHARE KIUMARSI, and FRANK L. LEWIS

plex hu Wi d sy involve
an interconnection of multiple decision makers
(or agents) whose collective behavior depends on a
compilation of local decisions that are based on partial
information about each other and the state of the environment
[1]-4]. Strategic interactions among agents in these syst can be as a
multiplayer simultaneous-move game [5]-{8]. The agents involved can have conflicting
objectives, and it is natural to make decisions based upon optimizing individual payoffs
or costs.

Game theory has been mostly pioneered in the field of ics; [9] idered a finite
win-loss game with perfect information between two players, and this classic example of
computable economics stands in the long and distinguished tradition of game theory that
goes back to [10] and [11]. Reference [12] discusses game theory in algorithmic modes but
not in what is today referred to as algorithmic game theory after realizing the futility of

deled

Dugddaf Ofject Ierfier 30. TIOXMCS 2006 3621461
Desz of publicasian: 19 finusry 2017

1086- 083X TR20TIEEE FEBRUARY 2017 « IEEE CONTROL SYSTEMS MAGAZINE 31

Multi-player Game Solutions
IEEE Control Systems Magazine,
Dec 2017



Games on Communication Graphs

Sun Tz bin fa



Communications and Control Engineering

Frank L. Lewis

- Hongwei Zhang
FL. Lewis, H. Zhang, A. Da.s, K. Kristian Hengster-Movric
Hengster-Movric, Cooperative Control Abhijit Das
of Multi-Agent Systems: Optimal Design
and Adaptive Control, Springer-Verlag, COOperatiVe (Ontml
2013 .
of Multi-Agent
Systems
_ Optimal and Adaptive Design
Key Point Approaches

Lyapunov Functions and Performance Indices
Must depend on graph topology

@ Springer

H. Zhang, F.L. Lewis, and Z. Qu, "Lyapunov, Adaptive, and Optimal Design Techniques for Cooperative Systems on
Directed Communication Graphs," IEEE Trans. Industrial Electronics, vol. 59, no. 7, pp. 3026-3041, July 2012.

Hongwei Zhang, F.L. Lewis, and Abhijit Das
“Optimal design for synchronization of cooperative systems: state feedback, observer and output feedback,”
IEEE Trans. Automatic Control, vol. 56, no. 8, pp. 1948-1952, August 2011.



Graphical Games
Synchronization- Cooperative Tracker Problem Xo(t)

Node dynamics X =AX +Bu;, X (t) eR", u; (t) € R™
Target generator dynamics Xo = AX,

Synchronization problem X () > X, (1), Vi
Local neighborhood tracking error (Lihua Xie)
0 = Z & (X —X;) +9i(% —Xp),
JeN;
Local nbhd. tracking error dynamics

5 = AS; + (d; + g;)Bu. Z e;B;u; Local agent dynamics driven by neighbors’ controls
jeN;
Define Local nbhd. performance index Values driven by neighbors’ controls

J3.(5,(0),u;, u_;) = I(5TQ,,5 +Uf Ryt + ) uj Ryu;) dt E%ILi(é}(t),ui(t),u_i(t)) dt
0

jeN;

K.G. Vamvoudakis, F.L. Lewis, and G.R. Hudas, “Multi-Agent Differential Graphical Games: online adaptive
learning solution for synchronization with optimality,” Automatica, vol. 48, no. 8, pp. 1598-1611, Aug. 2012.

M. Abouheaf, K. Vamvoudakis, F.L. Lewis, S. Haesaert, and R. Babuska, “Multi-Agent Discrete-Time Graphical
Games and Reinforcement Learning Solutions,” Automatica, Vol. 50, no. 12, pp. 3038-3053, 2014.



New Differential Graphical Game

U,

Local Dynamics
Local Value Function
Only depends on

graph neighbors

U;  Control action of player i

State dynamics of agent |
5 Ag; + (d; +9;)Bju; — Ze” iU

eN;
Value function of player i J

3.(8,(0),u u_;) = j(aTQ,,a Ful Ry + Y uTRyu;) dt
0 jeN;



Standard Multi-Agent Differential Game

U,

N

Central Dynamics
® > Local Value Function
depends on ALL

/ other control actions

Central Dynamics

N
‘ z'=Az+ZBiui
i=1

U. Control action of player i

Value function of player i

o0 N
J:(z(0),u;,u_;) Z%I(ZTQZ+ZU} Riju;) dt
=

0



New Definition of Nash Equilibrium for Graphical Games
To restore symmetry of Nash Equilibrium
Def: Interactive Nash equilibrium
{u/,u3,.ux | are in Interactive Nash equilibrium if
L J 20 (U, ug)<Ji (U ,ug_;), VieN 1. They are in Nash equilibrium

2. There exists a policy U; such that 2. Interaction Condition
Ji (Uj,Ug_j) # J; (U’;,U:;_j), Vi, je N

That is, every player can find a policy that changes the value of every other player.

Theorem 3. Let (A,B,) be reachable for all i.
Let agent i be in local best response

J; (uf,n_,-) <J; (u;,u_;), Vi

Then {uf.u;‘ ..... u}}} are in global Interactive Nash iff the graph is strongly connected.



Graphical Game Solution Equations
Value function

Vi(5 (1) =1 I(éTQ..fHU Ryl + > U] Ryu;) dt

jeN;

Differential equivalent (Leibniz formula) is Bellman’s Equation

oV, oV, T
Hi(5i,a—5i,ui,u_i)zé—(Si AS, + (d; +g;)Biu; — JEZN:e,J Uj |+167T Qs +3ul Ryuy +4 JEZN:u TRyu; =0
Stationarity Condition
OoH.; oV,
0=—" = u =—(d; +g,)R;'B,’ —-
ou; a6,
1. Coupled HJ equations
A +167 Q6 +1(d; +g)28v' BRlBT—+ Z(d +g) J' B.R:'R:R:'B." i —L-0ieN
85 1 ) JUN TN F 0.

i ' jeN; J

Vi «
Hi(5i'6—5liui u_)=0

| 1 OV oV,
where  A°=As —(d; +0;)°BR: 1B —-+ Z & (d; +0;)B;R'B;’ —L.,ieN
Iy 09;

Now use Synchronous Pl to learn optimal Nash policies online in real-time
as players interact

Distributed Multi-Agent Learning Proofs



Online Solution of Graphical Games

Kyriakos Vamvoudakis

Multi-agent Learning Convergence proofs

Use Reinforcement Learning

POLICY ITERATION

Algorithm 1. Policy Iteration (PI) Solution for N-plaver
distributed games.
Step 0: Start with admussible initial policies u? VWi

Step I: (Policy Evaluation) Solve for I'f!-‘rr using (14)

k
aF.
Hi(6.— ufu Fy=0vi=1.__ N (38)
A
Step 2: (Policy Improvement) Update the N-tuple of control
policies using
k
. (] 8
= aegmin 1,6, 25 Vi1 N
u, 00;
which explicitly 1s
av.*
u" = ~(d, +g)R;B L Vi=L..N. (39)
i

Go to step 1.

On convergence End |

Convergence Results

Theorem 3. Convergence of Policy Iferation algorithm
when only i agent updates its policy and all players u_;in
the neighborhood do not change. Given fixed neighbors
policies w_;. assume there exists an admissible policy wu;.

Assume that agent 7 performs Algonithm 1 and the its
neighbors do not update their control policies. Then the

algorithm converges to the best response u; to policies n_; of
the neighbors and to the solution V; to the best response HJ
equation (36).

The next result concerns the case where all nodes update
their policies at each step of the algonithm. Define the relative

control weighting as p; = E(R;R&-}, where E(R;R{-j} 1s the

maximum singular value of R;-II R;.

Theorem 4. Convergence of Policy Iteration algorithm
when all agents update their policies. Assume all nodes 7
update their policies at each iteration of PI. Then for small

enough edge weights ¢; and o;. g, converges to the global

Nash equilibrium and for all 7, and the values converge to the
optimal game values If’,-k — I*’,-*.



Data-driven Online Sdlution of Differenti;lﬁM;-_‘,_'_
Zero-sum 2-Player:Games and"H-infinity Control




H-Infinity Control Using Reinforcement Learning

Disturbance Rejection

System Performance output disturbance
z - d
| x=T0)+g(x)u+k(x)d
X y =h(x) u control

z:[yT uT]T

u=1(x)
L, Gain Problem
Find control u({t) so that OEHZ(t)HZ dt T(hT h+ HUHZ)dt For all L, disturbances
0 =0 < y? And a prescribed gain y?
fla®)de  [Jd@)y dt
0

0

Zero-Sum differential game -  Nature as the opposing player

The game has a unique value (saddle-point solution)
iff the Nash condition holds

SRR \‘ | U
e 7
NI




Online Zero-Sum Differential Games H-infinity Control
system  X= f(x,u)= f(x)+g(x)u+k(x)d

y = h(X) 2 players
Cost V(x),u,d) = [(A"h-+u"Ru = 52 [d* )t =[ r(x,u,d) o
t t . Leibniz gives

Differential equivalent

Game saddle point solution found from Hamiltonian - ZS Game BELLMAN EQUATION

H(x,%—\;,u,d):hTmuT Ru—y? ||d||2+(VV ) (f()+g(xu+k(x)d)=0

. : . . : . oH oH
Optimal control/dist. policies found by stationarity conditions 0= Yy , 0= p

1
u=-3Rg" (x)VV d=——k' ()VV
2y

HJI equation 0=H(x,VV,u ,d")

=hTh+vV T (x)f(x) - %VVT X)g(x)R1g" (X)VV (x) + 4%va (x)kk V'V (x)
y

D. Vrabie and F.L. Lewis, “Adaptive dynamic programming for online solution of a zero-sum differential game,”
J Control Theory App., vol. 9, no. 3, pp. 353-360, 2011

K.G. Vamvoudakis and F.L. Lewis, “Online solution of nonlinear two-player zero-sum games using synchronous
policy iteration,” Int. J. Robust and Nonlinear Control, vol. 22, pp. 1460-1483, 2012.



Actor-Critic structure - three time scales

Critic
Learning
procedure

V

L

V=x'cTcx+a'ad, ifi=1

V=W w+a'q,

ifi>1

A

System

X=AX+Bou+Bw; Xy

Rl

Disturbance/:
Player 2 :

X







IRL with Experience Replay

Humans use memories of past experiences to tune current policies

system i(t) = f(z(t)) + glz(t)) u(t) I\/!qdares and Lewis, Automatica 201.4
Girish Chowdhary- concurrent learning

Value f )+ 2f (A tanh™ /)\ Rdv)dv- Sutton and Barto book

Bellman Equation Q(z)+ ) ()\ tanh ™' (v/)\) Y Rdv+V V" () (f(z)+ g(x)u) =0, V(0)=0

IRL Bellman Equation V(z(t — T)) = f (Qz(7)) +2 fo “(Atanh™(v/A))" Rdv)dr + V(x(t))

Action Update u' = —Atanh ((1/2\)R™'¢" (2) VV'(x))

VFA- Value Function Approximation  V(z) = W' ¢(x)
Bellman Eq gives Linear Equation for Weights f(Q({I,‘(T)) + 2»/: (A tanhfl(v/)\))TR dv)dr + W Ap(z(t) = €,(t)

t—=T

i/o Data Measurements Ag(z(t)) = ¢(z(t)) — p(x(t — T))

jQ+2 (Atanh ™! (v/A))" Rdv) dr

Standard Critic Weight Tuning

A

o A(t) ,
Wh(t) = =0y o s (p(t) + Ap(t) W (2))




IRL with Experience Replay
Humans use memories of past experiences to tune current policies

Modares and Lewis, Automatica 2014

VFA- Value Function Approximation V(x) = V[71T¢(a;) si;‘tSh ChOdW;hiWQCOECU”e”t learning
utton an arto noo
i/o Data Measurements
= J (@2 [ ovtant /) Ra) dr 1. Speeds up convergence
Data from Previous time intervals 2. PE condition is milder

The samples are stored in a history stack. To collect data
i the history stack, consider Ao and p, as evaluated
values of A@(t) and p(f) (see (17) and (26)) at the
recorded time t, . That 1s,

Ao, = Ao(t) = o(a(t)) — Ha(t, — T)) 27)

and

t
p, = plt,) = ] (Q + 2 lou (A tan11_1(-L/)\))TR d'l-‘) dt (28)
5T Previous data

NN weight tuning uses past samples ( A \
: Ag(t) | Ad, r
W(t)=— Ap(t W Ao W (t



New Principles

Off-Policy.Learning




Off-Policy Reinforcement Learning

Humans can learn optimal policies while actually playing suboptimal policies
On-policy RL

Target policy: The policy that we are learning about.
Behavior policy: The policy that generates actions and behavior

Z

Ref. Target and behavior sl System

)? g policy g
/

Target policy and behavior policy are the same

Sutton and Barto Book

163



Off-policy RL

Humans can learn optimal policies while actually applying suboptimal policies

y

‘>
—> Target policy >
— >
/
Ref. >|  Behavior Policy > System >

Target policy and behavior policy are different

H. Modares, F.L. Lewis, and Z.-P. Jiang, “H-infinity Tracking Control of Completely-unknown Continuous-time Systems via Off-policy
Reinforcement Learning ,” IEEE Transactions on Neural Networks and Learning Systems, vol. 26, no. 10, pp. 2550-2562, Oct. 2015.

Ruizhuo Song, F.L. Lewis, Qinglai Wei, “Off-Policy Integral Reinforcement Learning Method to Solve Nonlinear Continuous-Time
Multi-Player Non-Zero-Sum Games,” IEEE Transactions on Neural Networks and Learning Systems, vol. 28, no. 3, pp. 704-713, 2017.

Bahare Kiumarsi, Frank L. Lewis, Zhong-Ping Jiang, “H-infinity Control of Linear Discrete-time Systems: Off-policy Reinforcement
Learning,” Automatica, vol. 78, pp. 144-152, 2017. 164



Off-policy IRL Yu Jiang & Zhong-Ping Jiang, Automatica 2012
Humans can learn optimal policies while actually applying suboptimal policies
system x=f(x)+g(xu

value IO =] r(x@).u()dz

On-policy IRL
[i] 0l et TN — [ Y 0T Ryl
V@) -IN(x(t-T) =—| _Q(ydz—[ u"Ru"dr
ult = —%R‘lgTJ)[(i] Must know g(x)
Off-policy IRL

x=f+gu'+g(u-u)

IIx®) -3V (x(t-T)=-] _Q(dz~| uRuldr+2[ u" R -u)dz
DDO : : -

This is a linear equation for JM and
They can be found simultaneously online using measured data using Kronecker product and VFA

g+

1. Completely unknown system dynamics

2. Can use applied u(t) for —
disturbance rejection — Z.P. Jiang - R. Song and Lewis, 2015
robust control — Y. Jiang & Z.P. Jiang, IEEE TCS 2012
exploring probing noise — without bias ! - J.Y. Lee, J.B. Park, Y.H. Choi 2012



Off-policy for Multi-player NZS Games

X = f(x)+2‘”_”zlg(x)uj

V,(x®) = [ (06U U, u ) = [TQ00+ D Ul Ryu )de

On-policy

Off-policy
X=f0)+2 " g0out?+ > g()(u; —ul)

VI (x(t +T)) =V (x(t)) = I Q (X)dzr - ItﬂZ

DDO

1. Solve online using measured data for

2. Completely unknown dynamics
3. Add exploring noise with no bias

Angela Song and Lewis

Algorithm 1:

Step 1: Start with stabilizing initial policies 27,27, 2/
Step 2: Given the N-tuple of pohc1esu e ___ug, . solve for
the N-tuple of costs Vlm (x(1)). VQH (x(a‘)), B _,Vﬁ] (x(7))
using
N
0=Vvyr (f(\') + ZH g(x)uﬁ.“)
+r, (el bl
with V 10)=0.

Step 3: Update the N-tuple of control policies using:
= awnun[H (., VV 1, aty,)] (10)

©)

which explicitly 1s

uy M =—=Rg (VI (11)

t+T N
TR udr -2 T uETR Y (U —uM)de

VI ui[k+1]



Off-Policy Learning for Estimating Malicious Adversaries’ Hidden True Intent

MA Systems X = AX +Bu. +D.v.

Two Opposing Teams

MAS H-infinity control

Cost  ViOx®) =4[ (¢ Qux +u R+ D ulRu, — /A Tw =7 D Ty dt =3[ rlx,u,v) dt

jN; N

Off-policy IRL - % = Ax +Bu* +Dv* + B(u —u*)+D(v. —v.*)

k+1 1 T 8V ‘ K+1 1 8V :

- =B T, Vi=_—p =

Ui > i 2, Optimal Target policies
Off-Policy Bellman Eq. Actual Behavior policies

Vik (x (1) _Vik (X (t+T)) = %J‘HT L (X, uik ’Vik) dt _J-HT (uik+1)T R (U, - uik) - 7/2 (Vikﬂ)T R (v, _Vik) at




Output Syﬁcﬁr&wization'of Heterogeneous MAS




Output Synchronization of Heterogeneous MAS

Heterogeneous Multi-Agents leader node X,
T =Ax +Bu

Leader

(, =S¢
y, = R,

Output regulation error 7 (t) =y, (t) - y,(t) >0

Output regulator equations
AIl +BT" =11LS
Cll. =R
Dynamics are different, state dimensions can be different

o/p reg eqs capture the common core of all the agents dynamics
And define a synchronization manifold



Optimal Output Synchronization of Heterogeneous MAS Using Off-policy IRL
Nageshrao, Modares, Lopes, Babuska, Lewis

=S :
MAS i = Ai z +Bu Leader S % Our Solution

=R

yi = Cz xi g CO

Optimal Tracker Problem
Augmented Systems
T
X(t) = |a,(t) ¢'] erR™”
: - A 0 B
Xi:TiXi+B1iui Plo S0

Performance index
VX)) = [TeTIXT(C,QC, + KW K )X dr
t 7
= X(t)'B X (1)

Control



Off-Policy RL

Tracker dynamics
X =TX +Bu
Rewrite as
X=(T+BK)X +B (u-K'X)=TX +B, (u—-K"X)

Now the Bellman equation becomes
t+6

e X (t+6t)" PP X (t+6t)— X (t) P* X (t) = — f ! te_%(T_t)(yi —y,)"Q (y, —y,)dr
t

t+0t
+ o2 e — KXW KX, dr

Extra term containing K™

Algorithm 2. Off-policy IRL Data-based algorithm

lterate on this equation and solve for P, K" simultaneously at each step

Note about probing noise  If u = K"X +e then (u — Ki“Xi) =e

t have to k |
Do not have to know any dynamics ., (=8¢

agent y =Ca Or leader y =RC



Theorem- Off-policy Algorithm 2 converges to the solution to the ARE

P+ Tsz - %Pz' + CliTQicli - Pz Bli I/Vz‘_lBuT Pz =0

7 7

Theorem- o/p reg eq solution

Pill Pi12
PP

21

Let P —

1

Then the solution to the output regulator equations A, + BT, =1LS
CIl =R

Is given by [l =—(P)'P
I =K, —K (P)'P

24 17 11 12

Do not have to know the
Agent dynamics or the leader’s dynamics (S,R)

181



New Principles

There Appear to be Multiple Reinfor

Multiple Actor-Critic Leamgagi

-

Narendra MMAC - Multiplé®Model Adapi




Applications of Reinforcement Learning

Microgrid Control

Human-Robot Interactive Learning

Industrial process control- Mineral grinding in Gansu, China

Resilient Control to Cyber-Attacks in Networked Multi-agent Systems .
Decision & Control for Heterogeneous MAS (different dynamics) &




Intelligent Operational Control for
Complex Industrial Processes

Jinliang Ding

Professor Chal Tianyou

State Key Laboratory of Synthetical Automation for Process Industries

Northeastern University
May 20, 2013

Jinliang Ding, H. Modares, Tianyou Chai, and F.L. Lewis, "Data-based Multi-objective Plant-wide
Performance Optimization of Industrial Processes under Dynamic Environments,” IEEE Trans. Industrial
Informatics, vol.12, no. 2, pp. 454-465, April 2016.

Xinglong Lu, B. Kiumarsi, Tianyou Chai, and F.L. Lewis, “Data-driven Optimal Control of Operational

Indices for a Class of Industrial Processes,” IET Control Theory & Applications, vol. 10, no. 12, pp. 1348-
1356, 2016.



Production line for mineral processing plant

the high-intensity magnetic production line (HMPL)

TTigh- Concentrated Mixed

intensity T, Dewatering | concentrated
. ——>

magnetic > unit ore
separation

Low- Mixed
intensity »| Dewatering tailing

' > unit

magne.tlc Tailing
separation

Particle ore Grinding
" unit
Raw Scrlfenmg __________________________
—» ofraw [
ore ore Useful
Roasting |ore Grinding
L » anddry » unit
ump seperation
ore Waste

the low-intensity magnetic production line (LMPL)

Mineral Processing Plant in Gansu China



RL for Human-Robot Interaction (HRI)

1.  H. Modares, |. Ranatunga, F.L. Lewis, and [
Interaction using Reinforcement Learnln
pp. 655-667, 2016.

I. Ranatunga, F.L. Lewis .
Human-Robot Intere&' g NV odel Reference Design and Adaptive
Transactions on Control Systems Tec'Iﬂgy, vol. 25, no. 1, pp. 278-28

B. AlQaudi, H. Modares, |. Ranatunga, S.M f, FL

reference adaptive impedance control
Technology, \hho;‘ p. 1







